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Foreword

The overall objective of FAIR CT.96.1394 (1997-99) was to achieve improvements in the
methodology of fish tagging techniques with emphasis on applications in fisheries research and stock
assessment. The report consists of ten chapters. The first three are essentially introductory, sketching
the background and concerns that led to the Concerted Action, and describing its rationale and
objectives. Chapters 4 to 8 address the various objectives of the project, whilst Chapters 9 to 11
provide a conclusion and additional information. Chapters 4 to 8 are based on the deliberations of
four separate working groups, which tackled different aspects of the subject and then presented their
conclusions for debate in a plenary session.

Chapter 4 is devoted to conventional identification tags and tagging techniques. The content
is comprehensive, but not exhaustive, because this area has been reviewed before. Responsible for
this chapter were: Mr. Curt Insulander, (SRI, Sweden), Dr Josianne Støttrup (DIFR, Hirtshals), Mr
Stig S. Pedersen (DIFR, Silkeborg) and Mr. Vilhjalmur Thorsteinsson (MRI, Reykjavik).

Chapter 5 is concerned with electronic tags and provides the most up-to-date compilation of
the field, covering tag function, engineering and methodology in some detail. This chapter provides
the technical core of the report. Participants in the workgroup were: Dr Geoff Arnold (CEFAS,
Lowestoft), Dr Tor G. Heggberget (NINA, Trondheim), Mrs Marianne Holm (IMR, Bergen), Dr
Niall Ó Maoiléidigh (FRC, Dublin), Mr Johannes Sturlaugsson (IFF, Reykjavik) and Mr Sigmar
Gudbjornsson (Star Oddi Ehf, Reykjavik).

Chapters 6 and 7 are devoted to the legislation governing tag use, and the numerous welfare
considerations underlying fish tagging programmes. One workgroup was devoted to both of these
tasks and consisted of: Prof. John Davenport (University College, Cork), Dr Etienne Baras (LDFA,
Belgium), Dr Gianna Fabi (CNR, Ancona) and Dr Gisli Jonsson (IEP-Keldur, Reykjavik).

Chapter 8 is concerned with data analysis and modelling, since development in these areas is
crucial to maximising the opportunities provided by novel electronic technology, as well as tagging
experiments generally. The participants in this workgroup were: Dr Olav Rune Godø (IMR, Bergen),
Dr. ing. Federico Borghini (United Kingdom), Mr Tapani Pakarinen (FGFRI, Helsinki) and Dr
George Tserpes (IMBC, Crete).

The report concludes with three short sections: Chapter 9 is devoted to the future of fish
tagging, Chapter 10 details the features of the CATAG website and Chapter 11 (Annex) lists the
addresses of the partners in the CATAG project.
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1. INTRODUCTION
Systematic tagging of fish for scientific purposes has been conducted for more than a

century. When it was started, this new approach represented an exciting methodology for
obtaining fundamentally new information about fish migration and movements as well as on
the dynamics of exploited fish population. However, it is now clear that tagging has not
developed as an extensively-used method for monitoring and management of major
European commercial fish stocks in the way that might have been expected. Undoubtedly,
much effort has been invested in tagging experiments, but the results have generally only
been used for qualitative evaluation of distribution patterns. Instead, fisheries management
has tended to focus on statistical analysis based on a variety of modelling approaches, often
based on expensive sampling programmes or catch data. A major reason for the under-
utilisation of tagging in the quantitative evaluation of fish stocks has been uncertainty about
data quality.

Recent developments in technology have created a new situation both with respect to
types of tags and the range of data that can potentially be collected. We are on the threshold
of fundamental new knowledge, both with regard to the understanding of biological
relationships and a full appreciation of fish-environment interactions. For the first time it is
becoming possible to get detailed information about life cycle properties of individual fish.
Furthermore, new and alternative population assessment methodologies are likely to emerge
from these developments, as well as opportunities to validate existing modelling approaches.
This new technology has arrived at a time when there is a crucial need for sustainable
management of the marine environment and its resources. New approaches in tagging
methodology may give us alternative solutions where traditional methodologies have failed.

Consequently, it is time to take a retrospective centennial view of tagging practice
and achievements, to sum up the state of the art, and thereby establish a firm basis for
identifying future possibilities and needs. Such a task can only be accomplished through the
interaction of scientists with a wide scientific and geographic spread. This report represents
the outcome of such an exercise, achieved through an EU concerted action programme
(‘CATAG’).

The chapters in this report have been individually prepared by subgroups with special
interests and competences within the fields they covered. It is also assumed that the report
will often be read by chapter of interest, and not as a complete and integrated publication.
The report also provides the basis of a developing, living website (http://www.hafro.is/catag)
in which material is presented in discrete, accessible sections. By intention therefore, those
issues covered by several of the subgroups are retained in their individual chapters even
though this results in a degree of duplication.

CATAG takes advantage of the 1994 EU-supported workshop on "Electronic Tags in
Fisheries Research and Management" (14-17 November 1994; Lowestoft, England [Arnold
& Lundgren, 1999]). After that workshop some of its participants reunited on discussions
which led to the application of another CA project which is this CATAG project.
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2. RATIONALE AND OBJECTIVES
Scientific assessments form the basis of fish stock management for the major

commercial stocks of European fresh and saline waters. One of the available tools for
assessment consists of tagging. In stock assessment, fish caught in a fishery are tagged,
released back into the environment and allowed to mix thoroughly with the rest of the
population. At some time later both tagged and untagged fish are caught in the fishery. From
the ratio between the two categories it is possible to estimate population (assuming a good
relationship between the tagged:untagged ratio and the catch:population ratio). Although the
motivation for such programmes is often to obtain quantitative measures for use in
monitoring and management of commercially-exploited fish populations, there have been
few good examples of this in practice. A major problem has been disagreement among
scientists concerning the reliability of recapture results and the validity of the models used to
handle the tagging data collected. Therefore, a thorough review is needed of the limitations
and problems associated with existing techniques and methodology.

Rapidly-developing microelectronic technology has stimulated the design and
development of new electronic ‘smart’ fish tags and many new instruments are already on
the market. This situation poses questions and challenges. To what extent can these new
approaches be used to solve specific problems and overcome limitation inherent in present
methodology? Furthermore, are there new technological approaches in sight, which can
form the basis for new approaches and cost-efficient solutions to problems within
quantitative fisheries’ biology?

Stock enhancement programmes have become an integral part of present approaches
to both population conservation and compensatory releases to maintain fisheries. An
important European issue in this context is the impact of salmonid aquaculture on wild
populations. Tagging techniques in general, and the application of new technology in
particular, may provide useful tools for the evaluation of the benefits of stocking exercises.

The CATAG concerted action (CA) had three objectives:

• To assess the past, present and future use of tags
• To assess reliability of tagging methods with emphasis on their applicationin

fisheries research and stock assessment
• To facilitate improvements in tagging methodology and application

A CA facilitates a broad European perspective of the subject, secures relevant
information that can be shared among partners and reduces the risk of duplicated work. Most
importantly, it can initiate and encourage new multinational initiatives in technological and
theoretical development within the field. The fact that much past European effort in tagging
has neither been directly applied nor the results properly published, supports the idea that an
international initiative can provide an improved platform for future scientific approaches in
the field.
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3. GENERAL CONCERNS
There are several subjects in tagging that are independent of tag type, species and

area. These include strategic planning and decisions made prior to tagging, proper sampling
of fish for tagging, treatment of fish during the tagging process, and finally, efficient means
of obtaining consistent high quality recapture information. These are all crucial aspects for
the success of a tagging programme that tend to be overlooked or may be considered too late
to be dealt with in an appropriate way.

3.1 STRATEGIC PLANNING OF TAGGING PROGRAMMES

There are some general aspects that should be considered when planning a tagging
operation. A careful assessment of the objectives, relating them to a cost/benefit analysis is
useful before deciding on the most appropriate tags and tagging methods. Chapters 4 and 5
have good descriptions of various tags and the pros and cons of their use. The analysis
should include the entire process from deciding on the hypothesis to be tested, to the
evaluation and presentation of the results. In this process the number of fish to be tagged in
relation to the expected number of recoveries must be considered, as well as the number of
recoveries needed for the statistical analyses planned for the data. In this report chapter 8 is
concerned with plans of experiments, data handling and modelling. The planning process
ought also to include some consideration of other experiments performed with the tag of type
that has been selected and the species of fish it is proposed to use. The CATAG web-site
(http://www.hafro.is/catag) has online various examples of tags, tagging methods and
examples of experiments being carried out in various places.

Legislation governing tagging practice is not something that many think about when
planning a tagging experiment. It is important though to look at general legislation which
concerns tagging because this may save problems at a later stage when the experiment is in
full swing or when it is published. This report has a special section devoted to the legislative
control of tagging in various European countries (chapter 6).

In planning tagging procedures it should be appreciated that the handling time for
each fish needs to be short. This is necessary for better fish survival, and also for the
economy of the project. If a method is used for the first time it is very important to practice
or rehearse the tagging procedures, to minimise handling time. One can practise on dead
fish, or follow the effects of tagging on fish held in captivity. Many tagging methods have
been tested by controlled survival and tag retention experiments. If it is not possible to get
such information from the literature some experiments of this sort should be planned.
Chapter 7 of this report is written for those who want to know about possible health and
behaviour changes associated with tagging, best surgical procedures, most appropriate
anaesthetics and disinfectants.

In planning for each tagging or marking programme one should check if the local tag
recovery and refunding system applies to the recaptured tags derived from the programme,
or if some special arrangements have to be made. Section 3.3 deals with the recovery of tags
and further information is provided in Chapter 5 (Section 5.6).
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3.2 TREATMENT OF FISH DURING CAPTURE, TAGGING AND RELEASE

Here we are concerned with the wellbeing of the fish during the time it is in the
fishing gear, hauled aboard a vessel, maintained within a holding tank, tagged or marked and
then released.

3.2.1 Capture of fish for tagging

The most important consideration during capture is the survival of the fish to be
tagged or marked. Different species of fish vary a great deal in how vulnerable they are
when handled. Some, like plaice, can endure much handling without problems. Others can
hardly be touched without their life expectancy being greatly reduced. Fish for tagging can
be obtained by any conventional capture methods, but the suitability of the catching method
may vary and one should survey the best methods available for catching the fish. However,
planning of tagging experiments is often constrained by the requirement that tagging must be
carried out at certain locations - where only a limited selection of fishing techniques may be
available.

When fish are using much energy during ‘flight or fright’ reactions, lactic acid is
produced by glycolysis in the muscles. An excess of this can build up in the blood if the fish
does not have time to recover (Wendt & Saunders, 1965, 1973). It should be realised that the
process of fatigue in fish continues while resting after handling, i.e. the increase of lactic
acid in the blood continues after the fish has been stressed (Wendt & Saunders, 1973). The
fatigue process is also temperature-dependent. Build up and recovery are slower at low water
temperatures and the total increase of lactic acid is less than at higher water temperatures
where lactic acid can reach lethal levels (Wendt, 1967). This indicates that resting fish
should be kept relatively cool.

Commercial fishing methods are normally designed to optimise harvest and not to
keep fish alive and healthy. This means that individual fish may have been stressed for long
periods in the gear and thus become less fit for tagging. Soaking time for stationary fishing
gears should therefore be limited, while towing times for active fishing gears, such as trawls,
should be reduced. Seasonal variation in vulnerability to stress and/or damage during the
tagging process can lead to incompatibility between experiments and obviate comparison.
This factor should be taken into account during planning.

It should also be appreciated that trawls and other active fishing gears can cause
considerable damage to fish. This can stem from the spines of fish or invertebrates such as
sea urchins, entrained rocks or sharp garbage items, or may stem from the fishing gear itself
(Jakobsson 1970; Jones, 1979).

Fish with closed swimbladders (physoclistous species) are very vulnerable to
pressure changes (e.g. Harden Jones & Scholes, 1985) when hauled too quickly by fishing
gear from depth to the surface. The physiology of the swimbladder of physicist species is
dealt with in some detail in chapter 5, which also provides more information on capture and
handling fish (Section 5.3).

3.2.2 Treatment before, during and after tagging

The following factors need to be considered:

• Quality of water in holding tanks (freshness, oxygen content, temperature)
• Suitability of the holding tank design (depth of water, space, texture)
• The nature and concentration of necessary anaesthetics or pacifiers
• Sterilising media for treating wounds
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• Sufficient immobilisation of the fish (tagging cradles, troughs or holders; Jones,
1979)

• Adequate recovery time after anaesthesia
• Appropriate conditions for releasing the fish, in particular their vulnerability to the

dropping from too great a height into the water; predation (from other fish,
mammals and birds); fishing gear or propellers; violent movements of the boat

The vulnerability of fish during the process from capture to release of tagged fish
makes it crucial that the whole sequence is kept as short as possible, since prolonged
handling may harm the fish more than the tagging itself.

3.3 QUALITY AND CONSISTENCY OF RECAPTURE INFORMATION

Even if performed technically as well as possible, no tagging experiments could be
regarded as successful unless accompanied by good reporting rates of recaptured tagged fish.
Most fisheries research institutes have well established offices or systems to receive
recaptured tags or information about tags and marks. If a tagging experiment or monitoring
programme is dependent on tags and information being returned to the laboratory controlling
releases, it is necessary to have such a system in place.

The work of receiving tags and information on tags and marks should be organised in
such a way that all incoming tags are responded to immediately and all information filed.
Lack of immediate interest by an institute will discourage fishermen from returning tags. It
should be made very clear to all those who come across tags or marks what they should do
with them - where to send the tags and what information to give. It is very useful to produce
envelopes with the return address of the main fisheries institute in the neighbourhood on the
front, and, on the back, a check list of all the information the institute wants to accompany
the recaptured tag. It is important that as many people as possible should know that all tags
and marks need to be returned and/or reported to the nearest fisheries institute. Refunds and
information on the release of the tag (e.g. where and when released; what increments of
growth have occurred since release) will in most cases make people motivated to return tags,
as will some information concerning the experiment, its objectives and possible benefits to
the fishing community.

The number of tags reported could be increased by several directed actions. In these
actions it is important to emphasise the high scientific value of the reported tag and the
overall benefit to industry and consumers of better knowledge. Protection and enhancement
of stocks for better catches in future should also be highlighted. When dealing with Data
Storage Tags, not only must the need to return the tag be shown, but it must also be clearly
emphasised that such tags carry data of great importance for scientific research.

Publicising the need for reporting recovered tags include the following:
advertisements in trade and local/national newspapers; setting up posters where the presence
of tagged fish occurring in a certain area is highlighted; presentation of results in fisheries
papers combined with statements of the need to get more data by obtaining more tag returns;
and, where appropriate, personal contacts with fishermen in particular areas.

In some cases, when large shoals of fish have to be scrutinised for tags, direct co-
operation between the institution originally tagging the fish, and the fishing industry itself
may be necessary. If possible, the whole catch should be scrutinised for tags, but if this is not
feasible for practical reasons, a proportion big enough to make it probable that sufficient tags
will be found should be sampled.

Co-operation between institutions within the country as well as international
agreements of exchange of reported tags should be established. To further underline the
mutual benefit of such exchanges, offers of some exchange of data will be beneficial to the
evaluation of the tagging results.
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Besides information on tagging programmes and data exchange, the fishermen
reporting tags need more incentive to send in each tag. An adequate reward scheme can take
several forms. Simplest is a direct payment per tag reported, but alternatives include
receiving souvenirs or the chance to take part in a later draw or lottery. This must be
combined with effective publicity, and the encouraging information described above.

Examples of actions and particular arrangements, announcements and rewards to
improve return rates of tags are numerous and some can be viewed on the CATAG web-site
(http://www.hafro.is/catag ). The web-site also features an example of how it can be used to
aid searches for the origin of release for a tag that is found. The Internet is used and viewed
by more and more people. Web-site information can be increasingly useful for the retrieval
of tags both internationally and internationally. It will not be too long before a captain of a
fishing vessel will have access to the WWW in the wheelhouse and can use a web-site to
trace tags that his crew have found in the catch.

3.4 REFERENCES
Harden Jones, F.R. and Scholes, P. 1985. Gas secretion and resorption in the swimbladder of the cod Gadus morhua.

Journal of Comparative Physiology B, 155: 319-331.
Jakobsson, J. 1970. On fish tags and tagging. Oceanography & Marine Biology, 8:457-99.
Jones, R. 1979. Material and methods used in marking experiments in fisheries research. FAO Fisheries Technical Paper,

190: 1-134.
Wendt, C. 1967. Mortality in hatchery-reared Salmo salar L. after exercise. Institute of Freshwater Research, Report, 47:

98 - 112.
Wendt, C.A.G. and Saunders, R.L. 1973. Changes in carbohydrate metabolism in young Atlantic salmon in response to

various forms of stress. International Atlantic Salmon Symposium 1973, p 55-82.
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4. IDENTIFICATION TAGS AND MARKS

4.1 INTRODUCTION

The need to identify individual fish or groups of fish has been a basic requirement in
fisheries science for many years. This has led to the development of a myriad of tag (defined
as man made objects attached to a fish) and mark (defined as identifiable characteristics,
either natural or applied to a fish) types, generally referred to as ID-tags. Applications
depend on the purpose of the exercise, the species and size of the individual fish, or the
number of identified individuals required for the study. New types of tag are continuously
being developed to deal with the conflicts arising from information requirements on the one
hand, and practical applications (permanency, identifiable, recognisable, effect on fish
behaviour, etc) on the other.

One of the objectives of this project was to review tags and marks, but since simple
ID-tags and ID–marks have been extensively reviewed, a summary of methodologies is
given here. Electronic tags are dealt with in Chapter 5. An extensive literature on simple
ID-tags and ID-marks is available with good reviews, such as Parker et al. (1990), Nielsen
(1992) and Jones (1979). During the development of the CATAG project, a web-site was
established (http://www.hafro.is/catag) for the dissemination of findings of the project. The
web-site contains short but comprehensive details on marking or tagging methods and
examples of their uses.

4.2 TAG AND MARK TYPES

External tags and marks are used to identify a group of fish or a number of individual
fish. They are easy to detect, usually without special equipment or knowledge.

Internal tags or marks are mostly not visible from the outside and may need special
equipment or intrusive methods to be detected to identify individual or groups of fish. An
advantage of internal tags or marks is that in some cases a large number of fish may be
tagged simultaneously and at a very early stage of the life history. An external tag or mark
may be used to call attention to the presence of an internal tag or mark.

The categorisation employed in the following sections has been adapted from Parker
et al. (1990).

4.3 APPLICATION OF METHODS

The numerous methods and the applicability of marking and tagging fish and other
aquatic animals have been extensively reviewed (see for example Jones 1976, Laird & Stott
1978 or Wydoski & Emery 1983 for reviews of methods; Jakobsson 1970, Jones 1979,
Parker et al. 1990, or Nielsen 1992, for more comprehensive reviews).

4.3.1 External tags

External tags are defined as visible tags applied externally on the fish. It follows that
the tag is easily detectable and no special equipment is required for detection. These types
of tags may carry an individual code, a batch code and/or visible instructions for reporting.
Examples of these types of tag include ribbons, threads, wires, plates, disks, dangling tags
and straps (McFarlane et. al., 1990).

The use of external tags for identifying individuals or groups of fish is the oldest
recorded and most widely used technique applied. External tags have been used for both
scientific and assessment purposes. The justification for any type of tag on a fish is the
future recovery or recapture and the resultant information collected. The more advanced
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external tags can carry extra information on individual fish together with reporting
instructions, information on rewards etc. The best known examples of external tags are
probably T-Bar Anchor Tags (Jones, 1979; Morgan & Walsh, 1993) and Carlin tags (Carlin,
1955) and various modifications of these. Several different external tagging methods have
been evaluated by Bartel et al. (1987), Dunning et al. (1987), Mattson et al. (1990),
McAllister et al. (1992), Nielsen (1988), Nakashima & Winters (1984), Weathers et al.
(1990) and Rasmussen (1980, 1982).

From the existing literature, the following advantages and disadvantages of using
external tags can be summed up:

(a) Advantages

• Inexpensive, or simple to produce, which may make their use cost effective
• Easy and fast to apply, requiring only simple technology for the application
• Useable for a large range of fish sizes (depending mainly on the size of the tag)
• Applicable to large numbers of fish and to a great range of species
• Easily detected due to the exterior attachment
• Numbered tags enable the identification of individual fish
• Provide space for printing information and encouragement of tag-returns from all

fisheries, which is a cost-effective reporting method
• Can give a broad geographical and seasonal return distribution
• Because of low cost, can provide a large number of returns, and sufficient data for

statistical analysis and assessment
• Long tag-retention time (depending on the type of tag)

(b) Disadvantages

• Information is limited to identification of the fish and its origin, i.e. reporting does
not provide information on the fish during the interim period from release until
recapture

• Precision of the information on recoveries may be variable, since recoveries often
come from all fisheries

• Return rates may be variable, since they often depend on reporting from all
fisheries

• May affect growth, health and survival, due to penetration of the skin, providing
an access route for infections, and due to the continuous drag on the tag if this
protrudes from the fish

• Fouling of the tags may be a problem. Overgrowth of algae, barnacles and
mussels may increase the drag on the tag considerably and may also make
detection difficult

• May become entangled in aquatic vegetation or in fishing gear
• Tag losses may be high, depending on tag type, fish species and experience of the

tagging personnel
• Can be difficult to apply or may not be applicable to very small fish
• May affect behaviour and swimming/hiding performance of the fish

4.3.2 External marks

An external mark may be defined as a mark visible on the outside of the fish and
employed to identify individual fish or groups of fish, but without any information regarding
reporting format. Examples of external marks are visible modifications of the fish body (or
fins), pigments, dyes, stains, brands, and meristic or morphometric characteristics.
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External marks are mostly used to identify a small number of individual fish or to
distinguish between larger groups of fish. The techniques are suitable for field studies in
relatively confined areas where recoveries are controlled by the institute that has conducted
the marking. Use of external marking of individual fish has been limited in scope. Marks
are often simple, cheap and quick to apply, but they carry limited information. Several
different external marking methods have been evaluated by Coombs et al. (1990), Laufle et
al. (1990), Knight (1990), Nielsen (1988) and Moffet et al. (1997). External marks like fin-
clipping have often been used as a means of calling attention to the presence of internal tags.

External marks may be entirely natural. Morphological traits like scale numbers,
number of fin rays, gill rakes or truss measurement may distinguish groups or populations of
fish (Sneath & Sokal, 1973; Schweigert, 1990).

The advantages and disadvantages of external marks are listed below:

(a) Advantages

• Marks are inexpensive and usually rapid to apply; this makes their use popular for
many types of studies

• They are ideal for identification of separate populations or batches
• They are usually simple to apply and personnel may not need to be specially

trained
• Little or no effect on fish growth, health and behaviour is produced
• Marks can be suitable for a range of sizes, since the fish do not have to carry a tag
• Marks may have long duration, depending on the type of mark
• They can be applicable to large numbers of fish and to many species

(b) Disadvantages

• A limited number of codes or combinations are possible
• Returns from a broad geographical area and for a long span of time e.g.

commercial or recreational fisheries - cannot be expected
• In most cases researchers or surveyors have to recover the marked fish themselves
• There are possibilities for recognition errors, due to confusion between marks
• Marks may deteriorate with time

4.3.3 Internal tags

Internal tags are defined as tags inserted or injected into the fish (body cavity, muscle
or cartilage) and carried internally. They can be used to identify individual fish or groups of
fish. Most of them, including Coded Wire Tags (CWTs), have to be removed from the fish
to be identified, but the more advanced ones, such as Passive Integrated Transponder Tags
(PIT tags) can be read without removing the tag, thus providing a completely non-destructive
means of identification. Examples of internal tags include plastic or glass tubes, metal
plates, small pieces of magnetised metal (CWTs) or semi-electronic tags transmitting
information (by radio waves) when an electrical current is induced (PIT tags).

The need to identify fish individually and to identify groups of fish with certainty
with minimal influence on behaviour, health or survival has led to the development of
internal tags. The single tag type applied to the largest number of fish is probably the CWT
(Schurman & Thompson, 1990). These are small pieces of magnetised stainless steel (size
0.5-2.0 mm x 0.25 mm), which may have a binary code engraved in the surface or laser
etched Arabic numbers, either for individual or batch identification. CWTs are normally
injected into the snout of a fish and are often combined with an outer mark, to aid recovery.
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Detection often relies on automated screening of catches, particularly in the relevant
industries (grading, processing). These tags are extensively used for tagging large numbers
of fish, but special detection equipment is needed. CWTs may, due to their small size, be
applied to a large range of fish sizes. Buckley & Blankenship (1990) evaluated the use of
CWTs. For further information on the use and applicability of CWTs see the web-site of
NMT (http://www.nmt.inc.com).

Magnetic Body Cavity Tags (MCTs) are steel plates inserted into the body cavity of
the fish. The tags are detected during fish processing with magnets placed at strategic
positions in the industrial units. This type of tag has been used for research and management
purposes for the Atlanto-Scandian herring stock (Jakobsson, 1970; Monstad, 1990) and is
apparently an important method for the monitoring of this resource (Anon., 1997).

PIT tags (size approx. 12 mm x 2 mm) could, in larger fish be injected into any part
of the fish where the flesh is thick enough to retain the tag, but are most often positioned
loosely in the abdomen. PIT tags are normally used on smaller numbers (up to hundreds) of
fish. PIT tags have also found use in aquaculture, to identify breeding individuals. The
specialised equipment for reading the tags limits the recovery to areas where catch can be
screened, or in fresh water where fish can be guided through very narrow passages. The use
of PIT tags has been evaluated by (amongst others) Prentice et al. (1990), and Van-Dam &
Diez (1997).

The advantages and disadvantages of internal tags are summarised as follows:

(a) Advantages

• Tags have little or no effect on growth, health and survival
• They are suitable for a wide range of sizes and many species of fish
• High retention rates are exhibited
• With suitable equipment, very large numbers of fish may be tagged by semi- or

fully automated tagging procedures with minimal handling of the fish (CWTs)
• Individual recognition of fish is possible
• Repetitive and non-destructive recoveries are feasible (PIT tags)

(b) Disadvantages

• Expensive equipment is required for tag application and detection (CWT, MCT,
PIT)

• Expert personnel are needed for tagging (and retrieval of CWTs)
• Recovery of specimens of fish may be labour-intensive (CWTs)
• Tag retrieval and identification can be labour-intensive (CWT)
• Tag migration within the body of tagged fish may reduce the probability of

recognition (CWTs)

4.3.4 Internal marks

Internal marks may be defined as marks not visible from the outside of the fish.
Internal marks are either naturally-occurring or artificially produced marks, that characterise
either individuals or, more often, groups of fish. Often they are marks in the bony structure,
and may be produced in various ways.

Internal marking is most often applied to batches of fish, when marking needs to be
done in a very mild and non-invasive fashion, and when it is acceptable that recovery of
information necessarily involves sacrificing or damaging the fish. Marks can be produced
chemically. In this case detection may require analysis of the chemical composition of the
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bones (for example stable strontium). Alternatively, the mark may be detected visibly (e.g.
alizarine or oxytetracycline revealed by ultraviolet light). Applications involving the use of
certain chemicals can be controversial because of later human consumption of marked fish
or because of entry of unwanted chemicals into the food chain. In most cases the final
concentrations in the fish are very low and may be negligible. Brothers (1990) gives an
overview of various otolith marking techniques, while Reinert et al. (1998), Akinicheva &
Rogatnykh (1996), Ruhle & Winecki-Kuehn (1992), Monaghan (1993) and Ennevor (1994)
provide information on various internal marking techniques.

Marks can also be produced by inducing a controlled growth pattern, leaving distinct
'checks' in the bony structures. Internal marks may also be entirely natural biological
phenomena. These include morphological traits (e.g. number of vertebrae, or pyloric caeca)
that distinguish groups of fish from each other (Sneath & Sokal, 1973; Schweigert, 1990), or
the presence of parasites belonging only to certain fish populations (Kabata, 1963).

Advantages and disadvantages of internal marks are summarised below:

(a) Advantages

• There are minimal immediate effects from handling and marking.
• Chemical marking is most often carried out by submersion in a chemical solution,

or by adding a chemical to the feed so is simple, rapid, inexpensive and applicable
to very large numbers of fish.

• Distinct growth patterns are produced in the natural environment and can be
induced through a strictly controlled temperature regime.

• Natural marks are, by definition, carried by the fish, so no extra marking or
additional handling is needed.

• Effects on behaviour, growth, health and survival of fish are minimal (often
absent).

• Normally the techniques are applicable to a wide range of fish sizes.

(b) Disadvantages

• Recovery usually requires sacrificing fish (for example for the removal of
otoliths).

• Recovery and analysis may be expensive, very time- and labour-consuming, and
consequently may not be cost effective.

• Analysis demands expert personnel and specialised laboratory facilities.
• Marking natural populations chemically requires holding fish for a period of time

long enough to produce the marks - this has resource/space implications.
• The techniques can be difficult to apply to natural populations in field studies.

4.3.5 Internal tags - externally and visibly detected

These are tags that are placed sub-cutaneously on fish in positions where they are
visible from the outside. A well known examples of this type of tag exist, the Visible
Implant Tag (VIT) or a newer type the Visible Implant alphanumeric (VIalpha).

This type of tag was developed in an attempt to combine the advantages of external
tags with those of internal tags. It is applied in studies where a minimal disturbance of the
fish is required. VITs are made of plastic strips and VIalpha are made of medical-grade
silicone rubber often with the addition of fluorescent material. These tags come with printed
information and placed for example on the cheek of brown trout (Salmo trutta), just behind
the eye. They are most often used in research work where the institute carrying out the
project also recovers tagged specimens, since tags may easily be overlooked. The use of
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VITs has been described by Bisgaard & Pedersen (1991), Bergman et al. (1992) and
Treasurer (1996). For further information on the use and applicability of VITs or (VIalpha)
see the web-site of NMT (http://www.nmt.inc.com).

(a) Advantages

• All of the advantages of the internal and external tags apply to these tags except
for their durability, which may be low.

• Tags may be read repeatedly without damaging or sacrificing the fish.
• Tags are simple and relatively inexpensive.

(b) Disadvantages

• Tag loss may be high.
• Tags can migrate in the fish to places where they are not visible.
• Transparency of the overlying tissue may change, causing the tag to become less

visible with time.
• Application may be relatively slow requiring skill and special tag injection

equipment.
• Tags may easily be overlooked, causing non-reporting of tagged animals by the

recreational or commercial fishery - an obvious drawback.

4.3.6 Internal marks - externally and visibly detected

These are marks placed sub-cutaneously on fish in places where they are visible from
the outside. The elastomer is an example of this type of mark.

In an attempt to combine the advantages of external marks with those of the internal
marks, elastomers were developed. They are applied in studies where minimal disturbance
of the fish is required. The marks consist of coloured and/or fluorescent plastic paint. They
may be placed (for example) between the fin rays or at the base of the fins. Mostly they are
used in research work where the institute carrying out the project also conducts recovery of
marked specimens, since marks may easily be overlooked. Visible Implant fluorescent
Elastomers are used to mark millions of Pacific salmon as well as shrimp and other aquatic
animals. The use of elastomers has been evaluated by Godin et al. (1996) and Morgan &
Paveley (1996). For further information on the use and applicability of VIEs see the web-site
of NMT (http://www.nmt.inc.com).

(a) Advantages

• Marks are simple, inexpensive and are relatively easy to apply.
• The marks may be recognised repeatedly without damaging or sacrificing the fish
• They are suitable for many sizes of fish, even down to 10 mm length (Frederick,

1997)
• With suitable equipment, large numbers of fish may be marked
• If correctly applied good mark retention is achieved
• Individual or group identification is possible using different colours or mark

positions

(b) Disadvantages

• Transparency may change causing the mark to become less visible with time
• Special mark injection equipment needed for large numbers
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• Marks may easily be overlooked. As a consequence non-reporting of marked
animals by the recreational or commercial fishery is an obvious drawback

•Special equipment such as UV-light may be necessary for detection

4.3.7 Genetic marks

Genetic marking is peripheral to the CATAG initiative. The use of genetic markers
for identification purposes has been described by Hansen et al. (1995), Pella & Milner
(1987), Lane et al. (1990), Galvin et al. (1995) and Fergusson et al. (1995). To withdraw
genetic marks, only a sample of body tissue is needed for analysis. Individual recognition is
described by Hansen et al. (1997). Practical guidelines to genetic marking may be found in
Gharret & Seeb (1990).

4.4 GENERAL APPLICABILITY

Tagging or marking fish with ID tags or marks has wide applicability and is used to
study population dynamics of fish stocks or populations. External and internal tags have
been used in studies to determine growth (Francis, 1988), or to estimate von Bertalanffy
growth curves in natural populations (James, 1991; Kimura et al., 1993). Such tags have
also been applied for estimating post-release survival, migration and behaviour of released
reared fish. European examples include work on salmon in the Baltic (Carlin, 1969) and cod
in Norway (Svåsand & Kristiansen, 1990a, 1990b). Being cheaper than electronic tags (e.g.
DSTs), some of these tags are ideal for preliminary experiments prior to the application of
more costly tags, or they can be used in conjunction with electronic tags to indicate the
presence of the latter. Furthermore, results of introductions, conservation of species,
transfers and improvements of fish stocks or populations can be monitored and evaluated.
Before embarking on a tagging or marking programme, it is important to assess the
applicability of different types of tags or marks.

4.4.1 Types of studies

Examples of types of studies involving tags or marks include the following:

• Estimates of mortality from recapture rates, e.g. total, natural mortality, fishing
mortality, tagging mortality

• Estimates of survival rates, e.g. after release of hatchery fish to the wild, escapees
from fishing gear

• Study of migration patterns, e.g. research on spawning areas and migration in the
wild

• Description of geographical distributions
• Studies of feeding behaviour, e.g. feeding areas and migration in the wild
• Studies of growth, e.g. growth patterns of individuals or groups of fish
• Management studies, e.g. effects of management decisions and measures taken to

improve population strength
• Studies of harvest effects on population dynamics
• Studies on harvest patterns, e.g. effects of yield of harvest in different areas and

periods
• Studies on fishery impacts or efficiencies, e.g. effects of types of gear used to

harvest in different areas and at different periods
• Studies of the reliability of tagging methods, e.g. by applying more than one tag or

mark at a time
• Studies of tag retention, e.g. double tagging
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• Mixed tagging experiments, to study the relationship between recapture rates of
different types of tags, or in conjunction with electronic tags to identify their
presence

4.4.2 Limitations and restraints

Although tagging in most cases can be done without seriously affecting fish health
and behaviour it must be remembered that no single type of tag or mark is perfect; each has
its advantages and disadvantages as shown in section 4.3. In particular, external tags may
cause health problems for tagged fish as the application implies penetration of the body and
dangling tags may cause continuous irritation and access for microbial infections. The
influence of tags on fish health, behaviour and growth is dealt with in section 4.4.3 (and
more comprehensively in Chapter 7). Tags and marks may be lost or deteriorate during the
period from tagging to recapture. Tag losses could result in data misinterpretation.
Gathering of data may also be hampered by factors beyond the influence of the marker, such
as low or irregular return rates from different fisheries. The fishery pattern (type,
distribution, effort, etc.) in the release/recapture area may also influence the distribution of
recaptures and thus bias results on migration or distribution. In order to obtain sufficient
data for analysis, an adequate number of fish must be tagged or marked.

4.4.3 Influence on behaviour, growth and general health

Ideally behaviour, growth and survival of tagged and untagged fish are similar. While
this may be true to many types of tags and marks, external tags especially may affect
behaviour and survival. For example, fish with external tags may be more vulnerable to
predation, or growth may be affected. By permanently penetrating the skin the tag may
provide an access route for infection. Additionally, tags may become overgrown with algae,
barnacles or mussels, adding weight to the tag and increasing drag. Tagging or marking of
fish involves treatment and handling, which disturbs and possibly stress the fish. Careful
handling procedures throughout the capture and marking process are of highest importance.

These questions are dealt with in detail in Chapter 7 of this report and on the CATAG
web-site (http://www.hafro.is/catag ) under ‘Welfare’.

4.5 SHELLFISH TAGGING

CATAG is primarily concerned with finfish. However, tagging is also of use for
studies on shellfish, mainly crustaceans and to a lesser extent molluscs. It seems probable
that the ease of attachment of DSTs to the hard shells of these groups will promote
increasingly ambitious research. The information given below is introductory rather than
exhaustive.

4.5.1 Crustaceans

Crustaceans, particularly crabs and lobsters, have been tagged for identification
purposes at least since the 1930s (MacKay, 1942). Initially this was done on newly-moulted
crabs and solely to determine migratory distances. Mostly these early studies used chicken
tags or Petersen disc tags attached to the carapace by wires.

The major problem for all crustacean tagging is caused by moulting. At this time the
exoskeleton splits along pre-determined fracture (‘suture’) lines and the soft animal emerges
backwards, leaving the ‘old’ exoskeleton behind. Any tag must a) survive the moulting
process, and b) not interfere with moulting itself. A simple method is to use v-notching of
various parts of the anatomy (e.g. carapace edge, telson), but these marks will tend to
disappear after one or two moults, and may not be evident to fishermen anyway.
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During the 1950s ‘suture’ tagging was introduced in crab studies in North America
and Europe (Harville & Verhoeven, 1978; Edwards, 1979). In this case two holes were
drilled on the carapace suture line and stainless steel wire passed through the holes. Plastic
Petersen button-type identification tags were attached by the wire. Mortality during the
tagging process was low (<5%; Edwards, 1979), but the holes tended to enlarge with time,
showing the characteristic blackness of damaged, necrotic crustacean exoskeletons.
Laboratory and field trials showed that tags could be retained through moults, but experience
indicates that positioning of holes must be very precise. This basic technique (but with
replacement of steel wire by braided terylene) has been used ever since in crab studies, and
has given good data for growth rates, but only in relatively large and robust crabs such as
Cancer pagurus, Cancer magister or Scylla serrata. Smaller species (e.g. Necora puber)
suffer much greater mortalities. The technique is also less suitable for population estimates
because of the suspicion that tag loss rates are high (50+%?).

Crabs are also commonly tagged with claw tags. Originally these were discs attached
around the base of one of the claws by stainless steel wire - nowadays nylon cable ties are
used instead. This type of tagging can be used for short-term population estimates and for
estimation of migration distances - the tags are always lost at moult.

New tagging methods are still being attempted in crustaceans, all aimed at solving
the moult problem. In all cases, the method aims to attach tags to muscle rather than
exoskeleton. This has been particularly successful in prawns, crayfish and lobsters, all of
which have a large muscular abdomen, with relatively large arthrodial membranes between
the abdominal plates. Floy® market three types of tag for these animals. Firstly, there are
anchor tags that are injected into the arthrodial muscle and have a piece of monofilament
connecting the anchor and an external piece of vinyl tubing. Barbed stainless steel or nylon
T-bar anchors have been used. A more effective version that certainly survives moult is the
‘streamer’ tag, which passes through the abdominal musculature from side-to-side with two
polypropylene streamers emerging on either side of the body. Anchor tags and streamer tags
have also been used on crabs, but great care has to be taken over placement or damage can
be done to the vascular system. Floy® also market ‘spaghetti’ tags for crabs - these are vinyl
tubing loop tags that pass through muscle at the junction between carapace and abdomen.

Stock enhancement studies with crustaceans require tagging of large numbers of
animals, and in most cases these tags must survive many moults. The most successful
approach has been that used in hatchery-reared lobsters (Homarus gammarus) released into
U.K. waters. In this case minute coded-wire tags were injected into the abdominal
musculature of juveniles a few cm long. These have been found in adults recruiting to the
fishery after several years (Bannister et al., 1994). Larger individually-coded wires can also
be used with adult crustaceans, but the risk of them entering the human food chain is usually
too great. Chemical tagging (in this case by dye injection) has been used in penaeid prawns
(Davenport et al., in Press) to permit population estimates in mark and recapture trials.

Any tagging technique that requires surgical implantation would be unlikely to
succeed - crustaceans have open blood systems and penetrations of the exoskeleton beyond
small holes are almost invariably fatal because of blood loss or extensive necrosis. Most
crustaceans also show marked agonistic interactions - fights between individuals are likely to
dislodge external tags.

4.5.2 Molluscs

Tagging of shelled molluscs (mussels, oysters, scallops etc) is done rarely, though
scallops have been tagged for growth studies in aquaculture. Tagging is simple - either holes
can be drilled through parts of the shell (e.g. the ‘ears’ of scallops) and plastic tags attached
by wires or cable ties. Alternatively, tags can be attached directly to the shell by adhesive
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(after abrasion to remove periostracum) - this approach has often been adopted in academic
studies (e.g. Davenport, 1989).

4.6 REQUIREMENTS AND RECOMMENDATIONS

Protocols for optimal handling procedures throughout the capture, and marking
process need to be made and updated for different species. National and international
courses on tagging procedures are recommended. Recommendations on treatment of the fish
are further discussed in Chapter 7.

There is a need for further studies on the impact of tagging and handling procedures
and the tags themselves on growth, survival and behaviour especially when the objectives
are to estimate the natural mortality, growth and migration patterns in natural populations.

While many of the problems mentioned in section 4.4.3 are often severe, many of
these could be avoided by careful choice of tag or mark and after completion of feasibility
studies.

Choice of tag or mark type should be made after a cost-benefit analysis of the
individual method including the marking and recovery costs as well as the quality of data
required.

Simple and cheap ID tags are recommended in preliminary studies to estimate
potential return rates before embarking on studies using more sophisticated and expensive
tags or marks.

Simple external ID tags or marks should be used to indicate the presence of internal
tags or marks.

Simple ID tags or marks should also be employed in mixed tag experiments, but not
only to indicate the presence of electronic tags. Programmes involving electronic tags
should also incorporate fish tagged with simple tags or marks to provide better information
on reporting rates than would be feasible if expensive electronic tags alone were used.

There is a need for further development of existing tag types. A particular concern is
that fouling problems should be addressed - biofouling of tags may be a significant problem
in tagging studies, but has been little studied.

There is a need for further development of tagging techniques to minimise handling
and fish holding times. Development of reliable, user-friendly techniques for underwater or
in situ tagging merit particular support.

When introducing new tagging methods, care needs to be taken to avoid loss of
valuable data-time-series (historical data) collected by older techniques. To do this,
comparative experiments should be conducted for a period sufficient to give confidence in
the ability to cross-calibrate between the two techniques.

Double tagging experiments are recommended for comparisons of tag performance.
The value of tagging or marking is crucially dependent on how precise and

comprehensive the information on the recovery is. The number of fish being tagged must be
large enough to take into account the expected recapture, recovery or reporting rate. A
number of measures could be taken to improve reporting rate. These include the following:

• Adequate rewards for returning the tag
• Advertisements to further stimulate reporting
• Direct communication with local fishermen
• Regular information bulletins on the progress of the project
• Prompt response to persons returning or reporting tags
• Anonymity should be guaranteed for those reporting on recaptures
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5. ELECTRONIC TAGS

5.1 INTRODUCTION

In recent years, the most significant advances in tagging and tagging methodologies
have come about with the development of electronic tags (e.g. Stasko & Pincock, 1977;
Priede, 1992; Arnold & Dewar, 2001; Arnold & Lundgren, 2002). The range and versatility
of these tags has meant that new applications are constantly being discovered and the full
benefits to be derived are barely being exploited at present. It is because of this that a
significant amount of attention should be drawn to this area in future fisheries related
studies. As electronic tagging techniques are constantly being developed and improved,
consideration is given in the following section to current methodologies and progress with
capture, handling and recovery of tagged fish. Particular attention has been paid to
attachment methods, especially with regard to modifications to the normal behaviour of the
fish that may make interpretation of data difficult to apply to whole populations. Apart from
providing information on fish location and position in the water column, it is now possible
using electronic tags to provide details of the immediate environment of the fish in real time
and over long periods, thus allowing study of the factors which most influence their
subsequent behaviour. Some of the recently developed electronic tags depend on recovery
through commercial fisheries. For this reason information is presented on the approach to be
taken when organising studies which require intensive and systematic tag recovery
programmes.

To illustrate the enormous potential for fishery based applications that could be
developed, specific examples of electronic tag application are given which have already
provided significant input into fisheries related surveys and investigations of fish
movements. Finally, a comprehensive examination is presented outlining the future
developments needed to sustain necessary technological developments and to consolidate
recent advances.

5.2 TAG AND SENSOR CLASSIFICATION

In recent years there has been a proliferation of electronic tag types and systems for
tracking fish at sea and in freshwater. Many of these tags have been designed with specific
applications in mind. The more generally applicable tags are described here together with
their operational details. The list is not meant to be exhaustive but to give a broad overview
of the tags that are most commonly used. Specific details on individual makes and
manufacturers can be obtained from the CATAG website (http://www.hafro.is/catag),
which has links to most of the main manufacturers of electronic tags worldwide. A summary
classification is given in Figure 5.2.1 and described below. In adopting it, we have taken a
pragmatic approach and listed radio tags together with acoustic tags in order to emphasise
common operational features, such as coding and programming. We think this will be more
helpful to potential tags users than classifying radio tags with inductively-coupled tags which
also transmit electromagnetic signals, albeit at a much lower frequency (Priede, 1992). Tag
characteristics and typical dimensions are summarised in Table 5.1.

5.2.1 Inductively-coupled electromagnetic tags

5.2.1.1 Passive Integrated Transponding (PIT) tags

The PIT tag consists of a small glass-encapsulated electromagnetic coil and
microchip that is inserted into the body cavity of a fish using a veterinary syringe. The tag is
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inert until it is activated inductively by a tag reader, which provides the power for the tag to
transmit a unique alpha-numeric code. Typical systems provide the possibility of using
billions of codes (Prentice et al 1990a, b). The tags are energised at frequencies of
approximately 400 kHz generating a return signal of between 40 to 50 kHz. Tags can be
decoded with a portable hand-held reader, which has a range of 10-15 cm. Automatic
readers are also available with either a tunnel detector (up to 30 cm diameter) or a strip
detector, which can be placed on the bed of a stream (up to 20 cm depth). PIT tags generally
range from 11 to 28 mm in length and 2.1 to 3.5 mm in diameter.

PIT tags may last throughout the life cycle of their “hosts” and the tagging system
allows rapid retrieval of transmitted information from large numbers of tagged fish. They
can be detected and decoded in living fish in fresh and salt water, and they eliminate the
need to anaesthetise, handle, restrain or kill the fish during data retrieval. Used with
computer stations, they allow repeated identification and measurement of individuals within
a population. As each PIT tag can carry a short unique code, it provides a good basis for
many types of survey where the fish are able to come in close contact with detecting
equipment. As the tag detection range is quite short, the principal disadvantage with PIT
tags is the requirement for specialised fish pass facilities (e.g. raceways, bypasses,
separators, and collection-diversion systems) which limit the applicability of the technique
(Prentice et al 1990a, b).

5.2.1.2 Electromagnetic tags

At frequencies below the VHF radio band (wavelength 1-10 m), antenna dimensions
are too large to be useful for most animal telemetry (Priede, 1992). However, low
frequencies have the advantage that the magnetic component of the electromagnetic wave
penetrates seawater and solid rock to a significant degree (Dunbar, 1972), without the
attenuation and reflection experienced by acoustic signals. Field strength decreases as the
fourth power of distance, so inductive coupling can only be achieved over ranges of a few
metres (Priede, 1992). This is sufficient, however, for the principal to have been applied
successfully with slow moving, bottom-living crustaceans, using a series of detector coils
placed on the sea bed and connected to an onshore monitor. The first systems were
developed in Australia and tested on the rock lobsters Jasus novaehollandiae (Ramm, 1980)
and Panulirus cygnus (Phillips et al., 1984).

Subsequently a more robust and fully automated system (Jernakoff, 1987) was
developed and used extensively to study the movements of P. cygnus in a shallow (<3 m)
lagoon-like environment off the western coast of Australia (see Section 5.6.2.2). The system
employed electromagnetic tags, which emitted a 31 kHz signal of 1.2 to 3.2 s duration, and
were glued to the cephalothorax with epoxy resin. Fifty loop-antenna aerials made of
double-insulated seven-strand copper cables (1.5 mm2) were laid over an area approximately
100 x 160 m and held in position by steel tent pegs. The aerials were 12 x 12 m and were
separated by a gap of 6 m. The tag detection distance was 6 m. Both aerials detected a tag
between two loops and this information was used in determining the position of the lobster.
A computerised system was used to record and decode information from up to 14 tags at any
one time. The system sequentially scanned each of the 50 aerials every 10-min and tag
signals were identified automatically.

A similar system (Collins, 1996; Collins et al., 2000; Smith et al., 2000), also based
on Ramm’s (1980) approach, has been used to study the behaviour of the European lobster,
Homarus gammarus (see Section 5.6.2.2). The tags (40-mm dia. x 10 mm deep), which
were glued to the carapace (70-136 mm), contained a transmitting coil, microcontroller, tilt
switch and battery. Emitting 3 ms pulses at a frequency of 32.7 kHz, the tags were detected
by 5-m diameter loops laid around an artificial reef and connected to a central receiver and
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Table 5.1. Summary information relating to electronic tags
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data logger on the seabed. The detection range of each loop antenna extended some 3-m
beyond its perimeter and each tag was individually identified by its pulse rate (0.5-1 Hz).
Lobster activity was quantified on a scale of 0-7 by counting the number of changes of state
of the tilt switch inside the tag during each 10-min period and coding them on an exponential
scale.

5.2.2 Continuously transmitting radio and acoustic tags

This is a large family of tags, which is increasing in size due to new developments for
specific applications. These tags are larger than PIT tags and require an internal battery to
power the transmitter and microchip (if present). The lifetime of the tag is a critical
consideration in telemetry studies and depends on the trade-off between transmitter size,
power supply, range and rate of the signals. Telemetry studies on free swimming fish are
generally short-term studies ranging over periods of hours to months. Apart from pulsed and
coded signals, which identify the individual fish, some tags also transmit data from physical
or physiological sensors (Priede, 1992). Sensors can record depth, swimming direction and
speed, or heart rate. The behavioural and physiological data sampled via transmitting tags
can be used to study the activities of fish in relation to their immediate environment and also
in relation to anthropogenic factors (fishing gears, dams, oilrigs, effluents etc). Microchip
technology allows for specific instructions to be placed on some types of tag that allow the
tag to be switched on or off under specified conditions (e.g. entry into freshwater). These
features can be used to increase the longevity of the tags, or to transmit under certain
environmental conditions. Accurate geolocation is possible by a variety of methods. The
detection range, which may extend to a kilometer in some instances, is generally less than
100m. Attachment of the tag can be internal or external (see Section 5.4).

5.2.2.1 Pulsed tags

Radio and acoustic transmitting tags can transmit a simple pulsed signal at a selected
pulse rate. Theoretically, large numbers of fish can be monitored simultaneously, using
multiple frequencies or pulse rates. In practice, however, it is very difficult to distinguish
more than four or five pulse rates on an individual frequency.

Radio tags, which can only be used in water of very low salinity, are useful in
freshwater because radio waves are less affected by physical obstacles, turbidity, turbulence
and thermal stratification than acoustic (non-electromagnetic) waves. Radio signals also
radiate through the water surface and can be detected at great distances because there is little
loss of signal strength in air (Priede, 1992). Receivers can be fitted in boats, aircraft or land-
based listening stations (e.g. McCleave et al., 1978; Solomon & Potter, 1988; Eiler, 1995).
Radio tags operate at high frequencies (20-250 MHz), so there is little signal drift.

Acoustic tags are used in the sea because sound is transmitted over long distances in
salt water, whereas radio waves are attenuated very rapidly (e.g. Niezgoda et al., 1998).
Frequencies of 30-300 kHz are used. Pulsed acoustic tags have been used to follow a
number of species in the open sea, often using a simple receiving system comprising a
directional hydrophone, a portable receiver and headphones (e.g. Stasko & Polar, 1973;
Lawson & Carey, 1972; Holland et al., 1985). This method provides only a rough indication
of the position of the fish relative to the tracking boat. Accurate position fixing with a
pulsed tag requires triangulation using an array of fixed hydrophones (e.g. Urquhart &
Smith, 1992; Smith et al., 1998c; O’Dor et al., 1998; Cote et al., 1998; Voegeli et al., 2001).
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(a) Non-programmable pulsed radio tags

Non-programmable transmitter tags are used to transmit a simple radio pulse at set
intervals. They require radio receivers operating at 30-50 MHz frequency range to detect the
signals.

(b) Programmable pulsed radio tags

Programmable microprocessor tags are used to transmit simple radio pulsed signals at
user defined intervals. Specific on/off sequences can be set which can be useful for
preserving the battery life of the transmitter. The tags can include sensors that measure
behavioural and physiological variables, such as electro-myograph (EMG) (Demers et al.,
1996; Kaseloo et al., 1996) and tail beat frequency (e.g. Young et al., 1972; Voegeli &
Pincock, 1981; Lowe et al., 1998), which can be telemetered to the receiving station.

(c) Non-programmable pulsed acoustic tags

These tags telemeter a simple acoustic pulsed signal to an acoustic receiver. They are
generally used in saline or semi-saline conditions, where radio signals cannot be transmitted.
There is a limitation on the number of individual fish that can be identified as each receiver
can only differentiate a single frequency.

(d) Combined Acoustic and Radio Tags (CART)

CART tags are hybrid tags combining components of both radio and acoustic tags
that allow individual fish to be tracked between salt and freshwater (Solomon & Potter,
1988). A conductivity sensor is incorporated to detect the salinity of the water body around
the fish and a microprocessor can automatically switch between acoustic transmission and
radio transmission as appropriate (Deary et al., 1998; Niezgoda et al., 1998).

5.2.2.2 Coded tags

Coded tags operate by emitting a digitally encoded signal on specific radio and
acoustic frequencies. Each signal can, theoretically, be unique. This offers the advantage
that many individual fish can be tracked separately on a single frequency and that the
information can be automatically recorded and downloaded to a PC. Coding has great
potential for increasing data acquisition rates and increasing sample sizes in telemetry
experiments. Digitally coded tags are also available (Cote et al., 1998; Voegeli et al., 1998),
which allow as many as 170 tags to operate at one frequency (see also Section 5.7.3.2).

(a) Coded radio tags

These tags contain a programmable microprocessor and transmit a digitally encoded
radio pulse at user defined intervals.

(b) Coded acoustic tags

These tags are similar to coded radio tags but transmit a digitally encoded acoustic
pulse at user defined intervals. They are used for monitoring fish passage in marine and
freshwater (Lacroix & McCurdy, 1996; Voegeli et al., 1998).

5.2.3. Transponding acoustic tags

A transponding tag allows the position of a free-ranging fish to be fixed accurately
relative to a research vessel (e.g. Greer Walker et al., 1978). Transponding tags differ from
other electronic tags in that they only transmit an acoustic signal when they receive an
interrogation pulse from a sonar (e.g. Mitson & Storeton-West, 1971). Ultrasonic
frequencies are produced by stimulating an annular ceramic transducer at its resonant
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frequency. Tag size is governed by the size of the transducer, whose diameter is inversely
proportional to frequency (Priede, 1986). Range also varies inversely with frequency, so
that, while a large diameter 30 kHz tag may have a range in excess of 1 km (e.g. Klimley et
al., 1998), a small 300 kHz tag usually has a range of less than 400 m (Greer Walker et al.,
1978). Frequencies of 34 to 50 kHz are commonly used for tracking large pelagic fish, while
60-80 kHz is commonest in coastal and estuarine waters (Priede, 1992). The higher
frequencies (150 to 300 kHz) are used in freshwater, for studies where a small tag is required
(Priede, 1992), or where specialised high-frequency imaging sonars are available (Arnold et
al., 1990). Transponding acoustic tags can be used to telemeter physical or physiological
data by transmitting a second pulse and varying the delay between the two in proportion to
the magnitude of the measured parameter (Storeton-West et al., 1978; Pearson & Storeton-
West, 1987; Mitson et al., 1982).

5.2.4 Data Storage Tags (DSTs)

These tags, which are also known as archival tags, range from simple data loggers,
capable merely of recording depth or temperature, to sophisticated programmable devices
capable of providing a direct estimate of the geographical position of the fish at regular
intervals over periods of many months. Developmental work over the last ten years has led
to the production of a number of tags that are beginning to be used very successfully with
free-ranging fish in the open sea. Tagged species have included tuna (Gunn et al., 1994;
Block et al., 1998a, 2001a, b; Inagake et al., 2001), Pacific salmon (Naito, 1997; Ogura,
1997; Ishida et al., 1998; Tanaka et al., 1998; Wada & Ueno, 1999; Walker et al., 2000),
Atlantic salmon (Sturlaugsson 1995; Karlsson et al., 1996; Sturlaugsson & Thorisson, 1997;
Sturlaugsson & Gudbjornsson 1997; Karlsson et al. 1999; Westerberg et al. 1999a & b), (sea
trout (Sturlaugsson & Johannsson, 1996; Sturlaugsson & Gudbjornsson 1997), arctic char
(Sturlaugsson et al., 1998), cod (Thorsteinsson, 1995; Thorsteinsson & Marteinsdottir, 1998;
Righton et al., 2000, 2001a, 2001b), and plaice (Metcalfe et al., 1994; Metcalfe & Arnold,
1997).

The most exciting and rapid advances in both technology and biology in recent years
have been associated with data storage tags that can be programmed to record details of
temperature, depth, salinity, pressure, light, chemical and physiological indicators at set
intervals. Other sensors in development include tilt, heading and magnetic position fixing.
Some of these tags can record data for up to five years and store this information for up to
twenty years. However, in order to retrieve the information the tags must be recovered from
the fish. Normally this involves establishing an intensive recapture operation, or relying on
commercial or recreational catch returns. An external mark or tag is usually applied to the
test animal to facilitate identification of fish carrying DST tags. Incentives (money, prizes)
are often offered to improve the frequency of tag returns (see Section 5.5). Due to the high
cost of production only relatively small numbers of animals have been tagged. However, the
cost is offset by the enormous amount of data that can be generated from single tags on
recovery.

Geolocation of fish may also be achieved by underwater light intensity measurements
that are used to estimate times of sunrise and sunset (e.g. Hill, 1994; Gunn et al., 1994;
Welch & Eveson, 1999). These data are used, in turn, to calculate latitude and longitude
using interactive software. An independent check on latitude can be obtained from the
temperature measurements made by the tag (Block et al., 2001b; Inagake et al., 2001).

DST tags have been produced in a number of shapes and have been developed for
applications with both roundfish and flatfish.
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5.2.5 Remote data telemetry

Recent developments have included acoustic tags that telemeter stored data to remote
receiving stations, instead of relying on recovery through commercial or recreational
fisheries. To date, however, these tags have only been capable of transmitting relatively
limited amounts of data and more progress has been made with tags that transmit data to
polar orbiting satellites.

Advances in oceanic tracking have been possible with the development of the
ARGOS data collection and location system (CLS), a joint venture between France (Centre
National d’Etudes Spatiales - CNES) and the USA (National Aeronautics & Space
Administration - NASA, and National Oceanic & Atmospheric Administration - NOAA).
This provides complete world coverage with receivers on board NOAA satellites orbiting the
earth in near-polar orbit at a height of 850 km (Taillade, 1992). The system uses UHF radio
frequencies and its Doppler location system depends on a very stable transmitter frequency
(401.650 MHz). The location of the platform transmitter terminal (PTT) carried by an
animal is calculated from the shift in frequency of the transmitted radio signal as the satellite
approaches and then moves away from the PTT (Harris et al., 1990, Taillade, 1992).
Accuracy of location improves with the number of successful ‘uplinks’ during each satellite
overpass and Service Argos classifies the quality of location (class 1, 2 or 3) achieved with
each fix. The implications of location accuracy for track reconstruction are discussed by
Hays et al. (2001).

Until recently, the size of PTTs has precluded the use of the Argos system with all
but the largest fish, and this difficulty has been compounded by the severe attenuation of
UHF radio signals in salt water. Applications were therefore limited to large sharks, which
surface sufficiently often to be detected by a passing satellite (see Section 5.4.2.1(a)).
Recently, however, results have been obtained from North Atlantic bluefin tuna fitted with
the first generation of ‘pop-up’ tags (Block et al., 1998b; Boyan, 1998; Lutcavage et al.,
1999). These tags detach from the fish at a predetermined time and float to the surface from
where they transmit to the Argos satellite (see Sections 5.4.2.3 and 5.7).

Combinations of transponding and data storage tags are being developed to increase
the versatility of the applications. Communicating history acoustic transponding (CHAT)
tags (Vemco Ltd., Nova Scotia, Canada) allow researchers to locate and track animals using
transponding tags and retrieve data without recapturing the animal (Klimley et al., 1998;
Klimley & Holloway, 1999). The information is telemetered from the tag to a tracking
receiver, or a fixed monitoring station, which can search for and locate any tag within range
of the receiver, then store real time information to disk with GPS position. The receiving
station can also send commands to the tag remotely to reset data recording intervals.

5.3 CAPTURE, HANDLING AND FISH RECOVERY

5.3.1 Introduction

Methods of capture and handling fish prior to, and during tagging, are of particular
importance in ensuring that experimental fish are in good physical condition for laboratory
or in situ experiments. Different capture and handling methods inflict different damages and
stressors on the fish and different species have different tolerance for capture and handling.
In addition, the vulnerability to handling may vary during different life stages. For example,
salmonids, especially Atlantic salmon, vary greatly in their resistance to handling during
their life span. While the fresh water related stages (parr, maturing and kelt stages) are less
vulnerable, the skin of smolts, post-smolts and immature fish is very sensitive to handling.
Atlantic halibut (Hippoglossus hippoglossus) are known to be difficult to handle without
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causing lethal damage (Midling, pers. com.), and several pelagic species such as herring
(Clupeids) and mackerel (Scombrids) are similarly easily damaged (e.g. Wardle, 1968;
Blaxter & Holliday, 1963).

This review of fish capture and handling methods in relation to electronic tagging is
based on a selection of experiments mainly restricted to marine fish with emphasis on
Atlantic species. Fresh water and non-Atlantic marine species are included where either the
capture method or the physiological observations are of particular interest.

5.3.2 Damage during capture and handling

Most capture methods result in abrasion of the skin. The mucus layer protecting the
epidermis and the scales is particularly delicate in most fish species. This layer protects the
fish against fungal, bacterial and viral invasions and, together with skin and scales, provides
a barrier against leakage or dilution of body fluids. An undamaged mucus layer is essential
for the well being of the fish after capture. Damage such as scale loss and skin wounds will
cause problems of increasing seriousness, depending on the degree of body cover lost.
Prolonged struggles or swimming activity during capture leads to exhaustion, with
subsequent conversion of muscle glycogen to lactate acid. In the case of severe exhaustion
lactates are released into the blood stream from the muscles and cause lethal metabolic
acidosis. The post-capture metabolism of accumulated lactates in the muscles will also lead
to an elevated oxygen demand, which must be considered during subsequent transport and
handling of the fish. Stress may also result in a reduction of immune responses.

A particular problem to overcome when working with physoclist (closed
swimbladder) fish, like gadoids, is the expansion or reduction of the gas contained in the
swimbladder if the external pressure changes. Physoclists can overcome this by absorbing or
secreting the gas in order to keep neutrally buoyant. The compensatory mechanisms are,
however, rather slow, and depend on both temperature and pressure (Harden Jones &
Scholes 1985). Even relatively small involuntary upward movements can cause substantial
swimbladder expansion, leading to rupture of the bladder and compression of internal organs
(see section 5.3.3 and 7.4.6). The effects of decompression are a major cause of initial
tagging mortality (Hislop & Hemmings, 1971) and physoclists must be brought slowly to the
surface to avoid swimbladder damage and consequential and unwanted effects on behaviour.

Solomon & Hawkins (1981) and Wardle (1981) give an overview of the damage that
may be inflicted on the fish during the capture and handling processes. The physiological
and bacteriological processes set off by capture and handling will act in a similar manner
after release back to nature. Experiences with methods used to capture fish for aquaria or
aquaculture are therefore very relevant also in this context, even though they may not yet
have been applied to electronic tagging.

5.3.3 Capture methods

The choice of a particular fishing method will depend on the species sought, fish
density, location and possible legal restrictions. Solomon & Hawkins (1981) discuss some
general advantages and drawbacks of various capture methods for obtaining good quality
fish for aquarium use. Bottom dragnets (trawls, seines etc.) and midwater trawls, in which
the fish is forced to swim with the gear during capture, may lead to exhaustion if towed too
fast, or for too long (Hayes, 1983). The risk of skin damage and scale loss is always present,
although this effect can be alleviated to a certain extent by using a lined codend. Despite
these disadvantages, towed nets often are the only possible practical method. Gillnets, either
stationary or drifting, enmesh the fish or entangle them and cause damage where the fish
have been held, often by the head, the gills or the trunk. If enmeshed at the gill region, the
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fish may either suffocate or bleed to death. Encircling nets like purse seines have several
advantages over gillnets, but if the catch is large, crowding during the final pursing may
cause oxygen depletion and abrasions when the fish hit each other. Baited or unbaited
trapping gear may be very effective (Hubert, 1983). The fish enter voluntarily and are
seldom damaged or severely stressed. However, the fish may be damaged if other fish enter
later, or when they are taken out of the trap. Solomon & Hawkins (1981) recommend that
particularly delicate species are removed under water into a holding tank, or that the lower
part of the trap is lined. In fresh water electrofishing (Reynolds, 1983) may prove effective
and inoffensive because the fish recover quickly. However, Solomon & Hawkins warn
against the possibilities of spinal fracture and haemorrhage that can be caused if the voltage
is not properly adjusted. Other authors (see Section 5.3.4) have also observed such effects.
Angling and handline fishing are singled out as methods with many advantages over other
methods. Damage is often slight and confined to the jaws and can be further minimised by
using barbless hooks (see Section 5.3.3.4). Struggling time can be reduced by using heavy
fishing tackle. The disadvantage of angling is the low number of fish that can be caught.
Longlines, setlines and drifting lines catch many more fish but have the disadvantage that the
hook may be swallowed with the bait by many species.

In many experiments the descriptions of how the fish were captured and handled
prior to electronic tagging are rather non-specific, often only stating which gear was used for
capture. The time elapsed from start of capture to landing on deck, the method of handling
the fish on board, or in the hatchery, and recovery times before tagging are often omitted.
The most widely applied method for obtaining experimental fish from natural environment,
however, seems to be to catch large numbers of fish, place them in a tank and, after an
observation period of relatively short duration, choose perfect looking specimens for
tagging.

5.3.3.1 Demersal fish and shellfish

Capture methods reported in electronic tagging experiments with demersal (bottom
dwelling) fish have included: hook-and-line fishing for lingcod, Ophiodon elongatus
(Matthews, 1992); handline fishing for cod, Gadus morhua (Arnold et al., 1990; 1994); trawl
fishing for plaice, Pleuronectes platessa (Greer Walker et al., 1978; Harden Jones et al.,
1977; Metcalfe et al. 1993; Metcalfe & Arnold 1997) and cod (Engås et al., 1991, Godø &
Michalsen, 1997, 2000); gill nets for cod (Thorsteinsson, 1995; Thorsteinsson &
Marteinsdottir, 1998); and seine netting for cod, and plaice (Isaksen & Midling, pers.
comm.). Due to their robustness and economic importance cod have been the targets for
many tagging studies.

Decompression of physoclists has commonly been dealt with by catching the fish at
depths less than 10 m, or catching the fish with gear (e.g. pots, other cage-type gear, or hook
and line) that enables the catch to be lifted slowly up to the surface. Tytler & Blaxter (1973)
suggest a 5-hour decompression halt for gadoids for every 50 % reduction in external
pressure. Engås, et al. (1991) captured cod by jigging in shallow water and let them recover
in net pens for 3-8 days before tagging with hydroacoustic tags. Arnold et al. (1994) caught
cod by rod-and-line or long-line in shallow water (< 8 m) being careful to bring the fish
slowly towards the surface, the maximum pressure reduction always lying well below the
50% recommended by Tytler & Blaxter (1973). Fish were kept and fed in a large laboratory
tank for several months until taken on board the tracking vessel, transported to the release
site, tagged and released from cages.

Another method commonly used to reduce mortality caused by over-inflation of the
swimbladder is to release the internal gas by puncturing the body wall and bladder with a
hypodermic needle once the fish is on deck (Midling, pers. comm.; Olsen pers. comm.).
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Gotshall (1964), who worked with blue rockfish (Sebastodes mystinus), reported positive
effects of swimbladder puncture, as did Gitschlag & Renaud (1994), who investigated
survival rates of caged and released red snapper (Lutjanus campechanus). Keniry et al.
(1996), who conducted experiments on yellow perch, Perca flavescens collected at 10 and
15-m depths in Lake Michigan, reported similar benefits and also assessed the effects of
decompression. Decompressed perch had higher survival than non-decompressed perch and,
as would be expected, this effect was greater for fish caught at 10 than 15 m. Puncturing the
swimbladder had a significant, positive effect on three-day survival; long-term survival was
not affected.

There are no restraints on the speed at which demersal fishes without a swimbladder
can be brought to the surface and flatfish like plaice and sole are relatively robust with
respect to handling in general. The Lowestoft Laboratory has electronically tagged plaice
since the early 1970s. Until recently the technique has been to select undamaged fish from
trawl catches and return them to laboratory tanks until viability was confirmed (Greer
Walker et al., 1978; Harden Jones et al., 1977; Metcalfe et al., 1993; Metcalfe & Arnold,
1997). Recently fish have been tagged at sea with data storage tags immediately after
capture to avoid disrupting natural patterns of movement and avoid problems with disease in
the laboratory (Hunter, pers. comm.).

Other non-physoclist fish such as sea wolves (Anarchicas lupus variants), anglerfish
(Lophius piscatorum) and halibut (Hippoglossus hippoglossus) are known to be difficult to
handle without causing skin abrasions (Midling, pers. comm.). At the Dept. of Fisheries and
Aquaculture, Fisheries Research Centre (FRC), Tromsø, northern Norway, where all these
species have been captured and kept in conjunction with various fish holding experiments,
the impression is that the grey wolf fish is best captured by Danish seine, while the spotted
wolf fish is most easily taken in a trawl. If caught on hooks, Anarchichas risk excessive
bleeding from the large arteries in the head and mouth region and need several weeks for
adaptation (Midling, pers. comm.). Anglerfish are also difficult to handle without damaging
the skin, although some individuals caught in a Danish seine survived in captivity for several
weeks (Midling, pers. comm.). Lumpsuckers (Cyclopterus lumpus) are easily damaged in
both the coastal and the pelagic phase, and require special observation when captured. Nets
and trawl both cause lethal skin damage. Plaice and lemon sole on the other hand cause few
problems and have been captured with seine net and transported with little mortality in
special holding tanks (Midling pers. comm.).

In order to avoid adverse effects of capture and to secure observation of entirely
natural food search and reactions to olfactory stimulants, Løkkeborg (1998) and Løkkeborg
& Fernö (1999) set up experiments where cod were allowed to voluntarily swallow tags
wrapped in various types of bait. This technique has also been applied with success to
several deep-sea species, which are often stenothermal and stenohaline (Solomon &
Hawkins, 1981), and could not otherwise be tagged because of the slow decompression rate
and the time needed to get them to the surface. Grenadiers (Coryphaenoides yaquinae, C.
armatus), deep sea eels (Synaphobranchus bathybius) and the deep sea gadoid (Antimora
rostrata) have all been successfully tagged with acoustic tags after ingestion of bait hung
beneath the cameras of a deep-sea lander (e.g. Armstrong et al., 1991, 1992a; Bagley et al.,
1994; Priede et al., 1990, 1994a, b, c; Collins et al., 1998).

5.3.3.2 Shellfish

Shellfish have mostly been obtained by trapping the animals in pots or cages, or in
some cases with tangle nets (González-Gurriarán & Freire 1994). Divers have been used at
shallower depths. The risk of damage is small if the gear is carefully hauled; decompression
is not a problem for shellfish. The attachment of tags is fast and the animals can rapidly be
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returned to their normal environment, if not tagged in situ by divers. Details of capturing
and tagging Norway lobster (Nephrops norvegicus L.), European lobster (Homarus
gammarus) and spider crab (Maja squinado) are given by Chapman et al. (1975), González-
Gurriarán & Freire (1994) and Collins & Jensen (1992) and van der Meeren (1997),
respectively.

5.3.3.3 Pelagic fish

Most pelagic species are susceptible to handling. As far as is known, the smaller
schooling species (e.g. Atlanto-Scandinavian herring (Clupea harengus L.) and Atlantic
mackerel (Scomber scombrus L.)) have not been used in electronic tagging studies so far.
But as tags continually get smaller and sensors more varied the possibility of tagging these
species increases and methods of handling will be of interest. Since 1968, the Norwegian
Institute of Marine Research has been quite successful in tagging large numbers of mackerel
and herring using conventional (internal) steel tags. Mackerel are caught by jigging,
carefully unhooked and placed in tanks for observation prior to tagging. Bleeding or
wounded fish are discarded (Myklevoll, 1994). Public aquaria, such as the North Sea Centre
(NSC) in Hirtshals in Denmark regularly obtain these species for display in tanks. The NSC
relies on professional fishermen, who use very fine meshed purse seines to catch schools of
herrings and mackerel close to the coastline. Fish are transferred to holding tanks, and
viable looking specimens chosen for transport to the aquarium. As mackerel are extremely
sensitive to touch, great care has to be taken to avoid skin damage and this is achieved by
only handling the fish when they are immersed in water. Herring are caught by similar
methods as the mackerel (Flintegård, pers. comm.).

Special methods have been developed for capturing and tagging large pelagic species
such as sharks, tunas, marlins and sailfish, which are difficult to handle and sedate on board
a boat because of their size and strength. Pole and line fishing from vessels using lures with
special barbless hooks is the main method of capture. The fish are handled rapidly without
anaesthesia and care is taken not to cause skin damage by using soft plastic covered tagging
or measuring cradles (Williams, 1992). Carey & Robison (1981) and Carey & Scharold
(1990) carried out pioneering work to develop methods for handling and tagging swordfish
(Xiphias gladius) and blue sharks, (Prionace glauca). Holland et al. (1990a, 1990b), tracked
yellow and bigeye tunas and blue marlins (Makaira nigricans) caught by trolling and pole-
and line fishing. The chosen tag attachment method enabled release of fish after
approximately one minute out of water. Block et al. (1992a, b) caught blue marlins for
tracking by trolling artificial lures with rod and reel from boats. Block et al. (1998a) have
developed a successful method of capturing and handling Atlantic bluefin tuna (Thunnus
thynnus) for use in archival tagging and acoustic tracking studies. The fish are caught by
heavy tackle using circle hooks and bait presented in a chum stick (“chunk fishing”), a
technique that allows chasing down the fish in order to keep fight times less than 15 minutes.
The fish are taken on board a boat with specially designed leaders through a “tuna door” in
the stern and tagged and released immediately. The method is suitable also for handling
large individuals (> 50 kg) with low risk of damaging the fish. A similar approach has been
used with southern bluefin tuna (Gunn et al. 1994).

Sharks lack a swimbladder and must swim to maintain position in the water column.
Muscular movement assists in venous return of the blood and oxygenation at the tissue level
is maintained in many by swimming at some optimum speed. Care is therefore needed when
capturing and handling sharks to minimise struggling and the time for which the shark is
restrained (Gruber & Keyes, 1981). Prolonged struggles affect blood serum protein
deleteriously and accumulate lactates. Capture by trapping or trawling should therefore be
avoided and Gruber & Keyes recommend the use of a handline. This method reduces the
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risk of injuring the mucous layer, skin and eyes and keeps the time for capture short. Nelson
(1978), Carey et al. (1981) and Stevens (1996) give references to capture of shark species by
handline or rod and line for subsequent electronic tagging.

5.3.3.4 Salmonids

Four main life stages of Atlantic salmon are recognised with different spatial
distributions and different vulnerability to capture and handling. These stages must be
considered separately in relation to the use of electronic tags (Anon, 1997).

Smolts: These fish are in transition from the fresh water phase to salt water tolerance
and have started their down-river migration towards the sea. Wild fish (10 - 17 cm fork
length depending on river environment and genetic origin) are generally too small to be
tagged with electronic tags at present. Many experimenters have used hatchery fish instead,
although smolts from wild stocks have been tagged where they are large enough to tolerate
the application of the smallest available electronic tags. Tytler et al. (1978) used wild smolts
caught in a trap in the river N. Esk. Holm et al. (1982) obtained a few wild fish from a fish
trap in the river Imsa in southwestern Norway. After capture, the smolts were stored for 2 -
14 days in a hatchery trough before tagging; they were released within 24 h of tagging.
Moore & Potter (1994) and Moore et al. (1990b, 1990c, 1992, 1995) used wild fish, which
they caught in streams in Wales and southern England using fyke-nets and a keep box for the
trapped fish. The fish were anaesthetised, tagged and put in oxygenated water for a recovery
period of 30 - 60 min. before release into the river. Other techniques used for capturing wild
fish for electronic tagging in rivers include electro-fishing and beach seining (Knutsson,
unpublished). However fish traps and trap nets have advantages over electrofishing as
trapping will capture only actively migrating smolts, while electrofishing takes all fish
including those not yet in the active migratory phase (Anon, 1997).

Post-smolts are salmon in their first year after leaving fresh water. Depending on
genetic origin and the time of capture after entering the marine environment, Atlantic salmon
in this stage range from approx. 15-35 cm in length. Until recent years few captures of post-
smolts had been made, but they are now regularly caught in surface trawls (Holst et al.,
1993; Hvidsten et al., 1995). Trawl caught post-smolts lose 50 - 100% of their scales even
in short tows (Holm et al., 1998; Holst & McDonald, 2000; Hvidsten, pers. com.). Other
reported capture methods include floating long-lines and drifting gillnets (Reddin & Short,
1991; Sturlaugsson & Thorisson, 1995), although none of these methods of capturing post-
smolts has yet produced fish in a fit condition for tagging. Instead, most tracking studies
have been performed with hatchery fish, or with wild fish trapped as smolts in freshwater
(Moore et al., 1995, 2000; Lacroix & McCurdy, 1996) and then released in rivers, estuaries,
or fjords. Recently a device for obtaining post-smolts in viable condition from trawl catches
has been developed and tested with promising results (0-6 % scale loss) (Holst & McDonald,
2000). Norwegian, Faroese and Icelandic research institutes plan to use the device in 2002
to catch post-smolts and grilse for a collaborative tagging project in the North Atlantic using
data storage tags.

Adult stage - immature fish. Immature salmon (both one- and multi-sea-winter fish)
are found in feeding areas in the open ocean. Handling must be done with great care as the
risk of scale loss is substantial (Hansen & Jacobsen 1997). Adult immature salmon are
occasionally caught by surface-trawling in the Norwegian Sea (Holm et al., 1998), but this
method is unsuitable for obtaining fish for electronic tagging because of the large loss of
scales that occurs. Drifting gill nets have been used to catch salmon for tagging in the
Pacific. Fish caught by long-line have been used for electronic tagging studies in the north
Atlantic (Jákupsstovu, 1988) and experiences from a Carlin tagging programme in the
Faeroes give valuable indications of how to handle the fish. The lines were patrolled



39

constantly to remove hooked salmon. The fish were carefully lifted over the ship's side with
a scoop-net and placed in a recovery tank where undamaged, viable looking fish were
chosen for immediate tagging and release. It is sometimes more deleterious to remove a
long-line than it is to leave it in the fish. Hansen & Jacobsen (1997) stress the importance of
hook shape for ease of removal and recommend using non-galvanised material in case the
hooks have to be left in place.

Adult fish - maturing salmonids and kelts: Maturing fish homing to their natal
streams have been captured in coastal and estuarine waters using gear such as bag-nets, trap-
nets, other fixed engines or beach seines. These methods are relatively harmless. In
addition, the salmon are much more resistant to handling at this stage in their life history, as
a result of physiological changes to skin and mucus, which occur in conjunction with
maturation. Several authors (Westerberg, 1982a, b; Solomon & Potter, 1988; Potter et al.,
1992; Heggberget et al., 1993; Smith & Smith, 1997; Sturlaugsson 1995; Sturlaugsson &
Thorisson 1997; Karlsson et al., 1996) have used fish obtained from trapping gear in the
vicinity of the rivers to study various aspects of the homing behaviour of Atlantic salmon.
Fish were tagged and released when they had regained their equilibrium after anaesthesia.
Brawn (1982) caught Atlantic salmon with a mackerel net and lure in an estuary and kept
them in cages for around 1 day prior to anaesthesia and tagging with acoustic tags. After
tagging the fish were left in a cage for up to 1 day to recover. Kelts are post-spawning fish
that will return to the sea. Like maturing fish, they are relatively resistant to handling
because of the condition of their mucus during the winter, although they become sensitive
prior to migration to sea when they become silvered (Sturlaugsson, J., pers. comm.) Where
they are installed, fish ladders provide excellent facilities for capturing fish in rivers and
good survival of ladder-caught adult Atlantic salmon and rainbow trout is reported by Peake
et al. (1997a).

Fly fishing with barbless hooks has been used in rivers in south-east Iceland to
capture anadromous trout (Salmo trutta L.) for tagging with data storage tags prior to
seaward migration (Sturlaugsson & Johannsson 1996; Sturlaugsson & Johannsson, in press).
Gill nets have been used to catch arctic char (Salvelinus alpinus L.) in lakes in northwest
Iceland prior to tagging both anadromous and non-anadromous fish (Sturlaugsson et al.,
1998; Sturlaugsson, J., pers. comm.). In both situations anadromous fish were tagged under
anaesthesia immediately after capture and released after a short period in an underwater
cage. High growth and recapture rates were obtained with both methods of capture
(Sturlaugsson, J., pers. comm.).

5.3.4 Handling and recovery

5.3.4.1 Anaesthesia

It is well known that anaesthetics cause physiological effects that can be measured as
changes in levels of corticosteroid and other parameters (see Chapter 7), which in turn may
lead changes in the behaviour of the fish for a varying time after sedation. On the other
hand, the handling stress will be reduced under anaesthesia and tagging can be carried out
more rapidly with less risk of the fish damaging themselves when trying to get loose.
Anaesthesia and anaesthetics are discussed in chapter 7. Legal requirements are dealt with
in Chapter 6.

Anaesthetics are easy to apply in the hatchery. Kreiberg & Powell (1991) identified
the netting and capture phase of various hatchery operations as the major contributor to
overall stress and developed a standard procedure for lightly sedating fish with metomidate
before any major handling disturbance. They recommend this procedure for handling of all
sensitive fish, such as chinook and other salmonids.
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In field experiments, the ideal conditions for handling the fish cannot always be met.
Setting up facilities for anaesthesia and recovery may be difficult because of spatial
restrictions or poor weather at sea. The experimenter must then evaluate the relative
difficulties of applying anaesthesia against possible trauma and damage caused by handling
unanaesthetised fish, although legal considerations (see Chapter 6) may be paramount.

When electronic tags can be attached rapidly and non-intrusively, anaesthesia has
often been replaced by simpler methods of keeping the fish quiet during tagging. Arnold et
al. (1994) covered the eyes of cod with wet paper and Thorsteinsson (1995) used a similar
method with the same species. Blindfolding is also commonly used when tagging adult
salmon. These fish are relatively easily calmed if kept in their natural swimming position,
for example in a moist handling cradle with the head covered with a wet soft cloth.
Handling of unanaesthetised salmonids is, however, not recommended, because of the risk of
scale loss and trauma, both internal and external (Sturlaugsson, 1995; Hansen & Jacobsen,
1997). McCleave & Arnold (1999) used a slurry of ice and water to anaesthetise yellow and
silver eels (Anguilla anguilla) prior to tagging.

Anaesthesia has in general not been applied when tagging large pelagic species, such
as tunas and sharks. The capture process is likely to be much more stressful and time
consuming than attaching the tag, which generally only requires a minor incision. Instead,
covering the eyes usually quietens the fish. Special devices to ease the process and minimise
handling time have been developed by Block et al. (1992, 1998a), Carey & Robison (1981),
Carey & Scharold (1990), Stevens (1996), Holland et al. (1990a; 1990b) and Williams 1992
(see Section 5.3.3).

5.3.4.2 Recovery from capture and handling

McCleave & Stred (1975), Moore et al. (1990a) and Lacroix & McCurdy (1996),
among others, have investigated experimentally the effects of tagging and handling on
salmonids using dummy tags. In most cases it was shown that the fish recovered quickly
from the handling process.

Once the fish has been released it is difficult to assess the impact of the capture,
handling and tagging process, although information from data storage tags may provide
some useful indications. The various studies performed to estimate survival of fish escaping
from fishing gear may, however, aid the assessment of short and long term effects of capture
on the survival of electronically tagged fish.

A number of studies have been made on demersal fish escaping from codends of
trawls, although estimates of mortality vary according to circumstance. Soldal et al. (1991)
found no mortality of cod (Gadus morhua) and less than 10 % mortality of haddock
(Melanogrammus aeglefinus) that were kept in cages anchored on the sea bed and observed
for 12 to 16 days after escaping from the codend. Jacobsen et al. (1992) observed saithe
(Pollachius virens) for 6-7 days by underwater television in cages drifting freely at 40-m
depth. Only low mortalities were recorded from these fish, which had escaped from a trawl
at 150-m depth. On the other hand, Sangster & Lehmann (1994) recorded 11- 52 %
mortalities of haddock and whiting (Merlangius merlangus) escaping from codends when
collected and stored in cages on the seabed for 60 days. No mortality was observed in the
controls and there were no significant differences between the two species. In trawl
simulation studies Soldal et al. (1993) and DeAlteris & Reifsteck (1993) recorded 100%
survival of cod after escapement, while haddock suffered 10% mortality. Additional
mortality occurred in all groups due to infection of wounds. Jónsson (1994) studied survival
and scale damage of long-line caught haddock in aquarium after simulating escape through
the meshes of cod-end; the survival rate in these experiments was only 30-50%.
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The swimbladder of gadoids is observed to heal relatively rapidly. Experiments
made at the University of Tromsø in the early 1980s (Olsen, pers. comm.) show that healing
started 2- 3 days after capture in cod caught in a trawl at 100 m depth. Nevertheless, the use
of fish with recently ruptured swimbladders should be avoided (Solomon & Hawkins, 1981),
particularly if the aim is to use hydroacoustics to observe natural behaviour in the short term
(Mohus & Holand, 1983).

The time the fish have been subjected to a fishing operation will also have
consequences for tagging and must therefore be considered. After seven days of post-
capture observation in cages Oddsson et al. (1994) recorded significant differences in
survival of Pacific halibut (Hippoglossus stenolepis) subject to towing durations of 30 and
120 minutes.

The capture process affects small and large fish differently. Hansen and Jacobsen
(1997) and Anon (1998a) found evidence of size dependent vulnerability to long line capture
and subsequent handling in Atlantic salmon. Larger salmon had significantly better Carlin-
tag recovery rates than smaller fish, which during tagging were observed to lose scales more
easily than the larger ones. The deleterious effects of capture on small fish have also been
demonstrated for other species. Soldal et al. (1991) examined scale loss of escaped cod and
haddock compared to a control group. On average, less than 1% of the total body surface of
cod was injured, while haddock, particularly those smaller than 40 cm, showed substantial
scale loss and therefore greater mortality.

Harrell & Moline (1992) have assessed the effects of electrofishing. Striped bass
(Morone saxatilis) captured by electrofishing showed significantly lower effects of stress
and shorter recovery times than striped bass caught in gillnets. Dalbey et al. (1996)
observed that rainbow trout (Oncorhynchus mykiss) suffered significantly more incidents of
spinal injury if pulsed rather than smooth DC was used. The severity of injuries was
increasing with increasing fish length and, although long term survival was not affected,
28% of the fish had markedly lower growth and condition.

Angling appears to be a good way of catching some species of fish. Pankhurst &
Dedual (1994) found no mortality in rainbow trout as a result of capture or any of the
handling protocols. In most fish initially elevated blood plasma levels returned to normal
within 24 h of capture indicating that metabolic recovery had occurred.

Tytler et al. (1978) gave wild smolts a recovery time of 3 - 48 h after anaesthesia and
tagging in a portable holding tank before transporting the tank to the release site, where they
were given minimum one hour to adapt to local river conditions. Moore et al. (1990a)
concluded that consideration must be given to a satisfactory recovery time before the fish are
released from the controlled experimental conditions. Their results indicate that smolts can
be safely released as soon as they are fully recovered from anaesthesia. Recovery from
anaesthesia was judged to have occurred when full equilibrium was regained, and the fish
reacted to external stimuli. Far better results have also been obtained for several Pacific
salmonids (Oncorhynchus spp.) released immediately (e.g. Mellas and Haynes, 1985) instead
of after prolonged recovery. Keeping wild salmonids for extended periods in tanks to
recover after handling may give adverse results and may not improve fish survival (Nettles,
1983, in Moore et al., 1990a).

In contrast, survival of hatchery fish appears to be improved by the provision of a
recovery period after handling. Sharpe et al. (1998) studied the effects of various hatchery
practices, including tagging and fin-clipping, on juvenile chinook salmon. No lethal effects
were observed, and although indeed stressful, the physiological effects measured as elevated
cortisol levels were of relatively short duration. Sharpe et al., nevertheless recommend that
fish to be released into a more challenging environment than a hatchery should be given a
recovery time of at least 24 h. The work of Hansen & Jonsson (1988) supports this
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observation: the survival of 1 and 2-year old hatchery smolts was reduced if they were
handled immediately prior to release for sea ranching. Of the various treatments given, dip-
netting significantly reduced the survival of the younger smolts, although it did not affect the
older smolts significantly.

5.4 TAG ATTACHMENT METHODS

5.4.1 Introduction

Electronic tags have been attached to fish both externally, in a variety of locations
(Fig. 5.4.1, and internally, by insertion in the stomach or by surgical implantation in muscle
or in the peritoneum (Figs. 5.4.1 and 5.4.2). There are advantages and disadvantages for
each of these methods and choice depends on the type of tag, the type of fish and its lifestyle
and the purpose of the research.

5.4.2 External attachment

Internal tagging is not feasible with flatfish, such as plaice (Pleuronectes platessa),
which have a tightly coiled gut and a small peritoneum; for these species external tagging is
essential. External tagging may also be desirable in other species for reasons of tag or data
recovery, even though internal tagging may be possible biologically. External tagging is
simpler and quicker than most internal tagging, avoids surgery and anaesthesia and may also
entail a shorter refractory period. It may also be essential with sharks and large pelagic fish,
such as tuna, marlin, and swordfish when it is not possible to catch the fish or bring it on
board. External tags may be attached directly to the surface of the fish, or by a trailing lead
that allows the tag to stream free when the fish is swimming. Tags have been attached
dorsally, both anterior and posterior, dorso-laterally and ventrally. A few authors have used
tags attached to the caudal peduncle, although this method is undesirable because it
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interferes with swimming, particularly when the tag is mounted transversely to the flow
(Carr & Chaney, 1977).
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5.4.2.1 Directly-attached tags

(a) Methods of attachment

Tags may be sutured directly to the body of the fish and this technique has been used
with cod (Gadus morhua) to fasten ultrasonic transmitters to the dorsal surface ahead of the
first dorsal fin (Mohus & Holand, 1983). Plaice (Pleuronectes platessa) have been tagged in
a similar way with a transmitter fastened to the upper surface of the body (Mohus & Holand,
1983). Most external tags are, however, attached with fine wires or nylon cords, which pass
through the body muscles and are attached to plastic discs or plates on the other side of the
fish. The plate may be cushioned with foam to minimise scale damage.

One of the commonest positions for directly attached external tags is alongside the
base of the dorsal fin (Fig. 5.4.2). Usually this involves a single tag on one side (e.g. Gray &
Haynes, 1979; Mellas & Haynes, 1985), although some studies have used a pannier
arrangement (Thorpe et al., 1981; Greenstreet & Morgan, 1989) to equalise the load on the
two sides of the body. Others have positioned the tag on the centre line immediately in front
of the dorsal fin (Figs. 19 & 20 in Hallock et al., 1970; Fig. 7 in Monan et al., 1975).
Typically, the tag is attached immediately below the dorsal fin (Fig. 5.4.3) with a plastic
plate on the other side of the body to prevent the attachment wires cutting into the muscles.
This arrangement has been used successfully to fit salmonids (Salmo and Oncorhynchus
spp.) with radio tags (Gray & Haynes, 1979), and also with data storage tags (Sturlaugsson,
1995). A transponding acoustic compass tag has been fitted to salmon in a similar fashion,
using a plastic plate on both sides of the fish (Potter 1985). Bradbury et al. (1995) describe
an interesting variant of the one-sided tag layout, which involves two tubes mounted one
above the other. The lower tube contains the transmitter, while the other is partially filled
with water to make the unit neutrally buoyant. The transmitter can be replaced when its
batteries are exhausted or exchanged for a dummy transmitter of identical size and weight,
while the fish recovers from the tagging process.
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Cod have been fitted with acoustic tags in the same position (Arnold & Greer
Walker, 1992, Arnold et al., 1994), although with the tag attached more loosely to the fish.
Plastic spaghetti tags (Fig. 4.1) were passed through the dorsal muscle at either end of the
first dorsal fin, using a surgical needle, and the ends tied in a reef knot. A 300 kHz
transponding acoustic tag was tied to the spaghetti tags using a nylon cord at each end of the
tag. Tesch (1974) used a similar arrangement to fasten an acoustic pinger alongside the
anterior end of the dorsal fin of eels (Anguilla anguilla), although in this case a single perlon
thread was used and the tag was coated in balsa wood to make it neutrally buoyant.

Nylon cable ties have been used to attach ultrasonic transmitters to yellowfin
(Thunnus albacares) and bigeye (T. obesus) tuna immediately behind the last dorsal fin,
where the body slopes down to the caudal peduncle (Holland et al., 1985). This method
(Fig. 5.4.4) is probably only useful for large robust species. Tags mounted on king salmon
(O. tshawytscha) in this position were not successful because the rear straps pulled out
(Hallock et al., 1970).

In recent years, the Lowestoft Laboratory has attached 300 kHz transponding
acoustic tags to plaice using a light ‘saddle’ made from a single stainless steel wire, which is
inserted through the ‘dorsal’ muscles (Fig. 5.4.5(a)). A numbered Petersen disc is fitted to
the underside of the fish, the wire is cut to length to allow for growth and the end twisted to
form two or three rings as with a conventional Petersen tag (Fig. 4.1). The acoustic tag is
attached to the saddle by a nylon cable-tie and - as a safety precaution - a fine nylon cord is
used to join the end of the tag to the top of the Petersen wire. This arrangement, which
allows the tag to rotate a little, separates the tag from the upper surface of the fish and keeps
the transducer clear of the sand when the fish buries into the bottom. A neoprene disc can be
used to cushion the tag and protect the surface of the fish.

A similar arrangement was used to attach the Mk 1 Lowestoft Data Storage Tag
(DST) to plaice (Metcalfe & Arnold, 1997). Two stainless steel wires were passed through
small lugs on opposite sides of the circular tag and two Petersen discs were used on the
under side of the fish (Fig. 5.4.5(b)). This system has been modified for the cylindrical Mk 3
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DST. The wire passes through a rib moulded around the case of the tag and is held in
position by a single large Petersen disc on the under side of the fish (Fig. 5.4.5(c)). The rib
is flattened on the underside to allow the tag to rest on the surface of the fish and the
Petersen disc has two holes. A similar arrangement was devised for a large acoustic tag that
telemetered the compass heading of the fish back to the tracking ship (Pearson & Storeton
West, 1987; Metcalfe et al. 1993). The Petersen wires passed through a small hole at each
end of a flat plastic plate, which was glued to a tapered wedge on the lower surface of the
tag; two standard Petersen discs were fitted to the under side of the fish (Fig. 2 in Mitson et
al., 1982).

An unusual arrangement is possible with blue sharks, which often swim at the surface
with the dorsal fin in air. The late Frank Carey of the Woods Hole Oceanographic
Institution (WHOI) used a combined data logger and satellite transmitter to track the
movements of three fish in the Gulf Stream from Cape Hatteras northwards. His design was
based on a transmitter developed by the Sea Mammals Research Unit (Cambridge, UK). It
consisted of two aluminium pressure tubes cast into a polyurethane saddle, which rested on
the back of the fish, and a flange, which bolted through the dorsal fin. A 45 cm long
streamlined mast raked back at the same angle as the leading edge of the fin carried a radio
antenna at the top and a small propeller half way up its rear edge (Kingman, 1996).

(b) Problems

There are a number of well-recognised problems with tags that are attached directly
to the body of the fish with two or more attachment points, as described above. These
problems, which include chafing, abrasion and ulcerated wounds, also arise routinely with
conventional tags and are discussed further in Chapter 7. Chafing may be avoided initially
by cushioning the tag on a thin layer of high-density foam (Fig. 5.4.2(a)), but often, as the
fish grows, the space between the tag and the body wall disappears and the tag grows into
the flesh of the fish. To date, this has not been too much of a problem with electronic tags,
because most radio and acoustic tags have only a limited life. It is likely to become much
more of a problem in the future with the use of archival tags with potential lives of 10 to 20
years.

External tags can adversely affect various aspects of the behaviour and physiology of
swimming animals, particularly if they have not been designed for minimal drag. There is
scope for substantial improvement in this area, particularly when developing smaller tags
(see Section 5.7.2.2). Shape needs consideration, as well as the method of attaching and
mounting the tag. The work that has been done in recent years to improve the streamlining
and positioning of tags on the backs of turtles (Watson & Granger, 1998) and penguins
(Wilson et al., 1986; Gales et al., 1990; Culik & Wilson, 1991; Wilson & Culik, 1992; Culik
et al., 1994; Bannasch et al., 1994) demonstrates the gains to be obtained from minimising
tag drag.

5.4.2.2 Trailing tags

(a) Methods of attachment

For many years the Lowestoft Laboratory attached 300 kHz transponding acoustic
tags to plaice and other flatfish using a nylon cord, which passed through the body of the tag
just below the end cap, and was tied to the upper ring of a Petersen disc wire. This
arrangement was very effective when the fish was in midwater. Flume studies (Arnold &
Holford, 1978) showed that the tag streamed free of the body when the fish was swimming.
On the bottom, the tag lay on the upper surface of the fish with the transducer close to the
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marginal (dorsal) fin. This was a poor arrangement when the fish was buried in sand, as the
acoustic signal was often attenuated and difficult to detect. This problem was mitigated by
the use of the saddle attachment described in section 5.4.2.1.

Similar single-point trailing attachments have been used with sharks (Fig. 5.4.1) and
salmon (Yoza et al., 1985; Ogura, 1997) and also to fasten positively buoyant data storage
tags to the upper surface of cod just ahead of the first dorsal fin (Godø & Michalsen, 1997,
2000). In this case, the tags were attached in the same way as conventional Lea tags, using
monofilament line inserted through the dorsal muscles.

Tethered tags require a strong permanent anchor point. With large free-swimming
fish that cannot readily be captured, a dart with an arrowhead that resists extraction from the
muscles is often used. Darts (Fig. 5.4.6) are commonly used with tuna, swordfish (Carey &
Lawson, 1973, Carey & Robison, 1981) and marlin (Holland et al., 1990a) and are applied
with an applicator pole or harpoon (e.g. Chaprales et al, 1998). Another solution, which can
be used when the fish is caught, is to place the dart in the muscles at the base of the second
dorsal fin, so that the barb penetrates the bony extensions at the base of the fin rays
(Williams, 1992). Titanium and nylon darts of this type (Block et al., 1998a, b) have
recently been developed in the USA for use with tuna and large billfishes (see Section
5.4.2.3).

(b) Problems

Trailing tags avoid many of the problems associated with close-coupled tags and, if
properly designed, should produce limited drag. The original 300 kHz transponding acoustic
tag developed at Lowestoft, for example, which had quite a high frontal drag coefficient (CD0

= 0.6), was shown to have little effect on the swimming performance of medium size plaice
(Pleuronectes platessa, 36-52 cm) and cod (Gadus morhua 50-70 cm). The majority of
these fish would have been slowed down by rather less than 5% and the extra power output
required for a tagged fish to maintain the same steady speed as an untagged fish of the same
size was shown to be about 3-5% (Arnold & Holford, 1978). Generally, however, little
attention has been paid to minimising drag, either by optimising the shape of the tag, by or
determining the optimal attachment point and tether length and this is particularly so for
small and medium size fish. Pop-up satellite-detected tags, which are designed to be
attached externally to large, fast-swimming pelagic fish, such as tuna and marlin, are
different. The shape of the tag has been optimised in field and tank trials (Block et al.,
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1998b; Arnold & Dewar, 2001). Designs are also available for a low-drag bomb-shaped
towed body for use with swordfish and other fast pelagic species (Weihs & Levin, 1997).

5.4.2.3 Detachable tags

Pop-up tags were first developed by Nelson (1978), who used them to retrieve
acoustic tags and also recover data by radio. Baba & Ukai (1996) describe a similar tag that
will detach itself from the fish after a pre-set interval and float to the surface, from where it
transmits a radio signal to an ARGOS satellite. A similar tag has been developed by
Telemetry 2000 (Columbia, Maryland, USA). The satellite determines the pop-up position
and the tag transmits a limited amount of stored data after it has reached the surface.
Currently this consists of a set of average hourly or daily temperatures, distributed equally
through the deployment, which can be up to 1 year in length. The tag, which is designed for
use with large pelagic species, is too large (34 x 4 cm, 65-68 g) for use with most of the
species exploited in European waters. However, it has been used successfully on bluefin
tuna (Thunnus thynnus) in the North Atlantic (Block et al., 1998b; Boyan, 1998; Lutcavage
et al., 1999) and less successfully in the Mediterranean (De Metrio et al., 1999, 2000). The
tag is contained in a composite, positively buoyant, low-drag housing towed by a short (25-
30 cm) leader attached to a tagging dart. The buoyancy is moulded to the rear of the tag,
which floats vertically at the surface with a 16-cm aerial projecting vertically upwards above
the surface. Prior to release, the tags, which are placed near the rear of the second dorsal fin,
trail freely behind the fish with both tag and aerial horizontal.

The attachment dart, which is made of titanium (Block et al., 1998a) or medical
grade nylon (Floy, Inc.), can be inserted in the dorsal muscle (Lutcavage et al., 1999) or at
the base of the second dorsal fin, where it can be anchored through the bony projections and
connective tissue radiating ventrally from the fin (Block et al., 1998a). Block et al. (1998b)
caught large bluefin tuna on rod and reel with heavy tackle and tagged the fish on board a
small angling boat. Lutcavage et al. (1999) caught large bluefin by rod and line, or purse
seine, and tagged the fish in the water, using a custom-built applicator, or a harpoon
(Chaprales et al., 1998). Lutcavage et al. (1999) and Block et al. (1998b) respectively report
success rates of 85 and 95% for data retrieval from batches of 20 and 37 pop-up tags
released on large tuna in the western North Atlantic.

External tags can also be deliberately detached to avoid adverse long-term effects of
tagging, or to recover the tag before it stops transmitting. Osborne & Bettoli (1995) describe
a positively buoyant tag assembly that detaches itself from the fish when the suture thread
decomposes after a few weeks. Rewards are paid for returned tags, each of which can be
reused several times. Different release times can be achieved through use of filaments with
different rates of absorption Baras (pers. comm.).

5.4.3 Internal attachment

Internal tagging is only suitable for a fish with a large stomach, or space in the body
cavity into which a tag can be inserted without impeding or damaging the internal organs.
Internal tagging avoids the causes of tag loss associated with external tags and has a number
of positive advantages, not least of which is the proximity of the tag to the centre of gravity
of the fish. But the method is not suitable for all applications and may produce signal
attenuation if acoustic tags are used with large fish. It is usually also necessary to mark the
fish externally, so that fishermen are aware of the presence of the internal tag, if recovery of
the tag is required.
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5.4.3.1 Stomach insertion

The stomach is the natural location in which to impose extra mass on the fish and this
may explain why the use of stomach tags is often very successful, particularly if tags have
been ingested voluntarily by the fish.

(a) Voluntary ingestion

Some fish will ingest acoustic transmitters embedded in baits deployed close to the
sea floor. This technique has been used to excellent effect to study the short term
movements of grenadiers (Coryphaenoides spp.) and other abyssal demersal fish in the
Atlantic and Pacific Oceans (Priede et al., 1994a, b, c; Armstrong & Baldwin, 1990,
Armstrong et al., 1992b; Collins et al., 1998). The work was done with Aberdeen
University’s free-fall vehicle, AUDOS, using ultrasonic transmitters or transponders
concealed in mackerel or squid bait. The baited packages were tied to a scaled cross in the
field of view of a 35 mm underwater camera using fine thread. More bait was tied to the
centre of the cross to help attract fish to the rig. Fish taking the baited tags triggered the
camera and were subsequently identified from the processed photograph after the vehicle
was recovered. The same technique has also been used with cod (Armstrong et al., 1992b;
Løkkeborg, 1998; Løkkeborg & Fernö, 1999).

(b) Forced ingestion

Forced insertion of a telemetry tag into the stomach is readily achieved with a glass
or plastic rod or tube (e.g. Monan et al., 1975), using glycerine as lubricant (Mellas &
Haynes, 1985). This method of attachment (Fig. 5.4.2) is more commonly used with radio
than acoustic tags and often involves an aerial wire fastened to the top of the mouth with a
dart, or fed back through the gill slits and allowed to trail free in the water. Forced insertion
is possible even with quite small fish and drinking straws have apparently been used to
implant tags in the stomachs of 5-6 cm American shad. Insertion is easiest with a hollow
tube fitted with a plunger (Fig. 7.5 in Nielsen, 1992). The tag is placed in the open end of
the tube, flush with the end, and expelled when the plunger is depressed as the tube is
withdrawn from the stomach.

5.4.3.2 Oviduct insertion

In salmonids and some other species, in which it is not connected to the ovary, it is
possible to insert tags into the body cavity through the oviduct. Peake et al. (1997b) have
recently shown that it is possible to insert dummy radio transmitters into Atlantic salmon
(Salmo salar) in this way without affecting survival, behaviour or egg development,
provided insertion is done prior to egg formation, or after the eggs have been shed. The
leading end of the tag was tapered to assist insertion. The radio aerial was allowed to trail
freely from the oviduct. Some fish expelled the transmitter via the oviduct within 7-13 days
of insertion but Peake et al. (1997b) reported retention times of 60 days for salmon (~70%)
that retained the tags for more than 14 days. Dissection showed that the tags were positioned
well forwards of the internal opening of the oviduct at, or near the pelvic girdle. Tags were
encapsulated in, and anchored by, a thin, transparent sheet of tissue. Similar trials with
rainbow trout showed that reproductive success was compromised when the tags were
inserted into fish with already developing egg masses. The technique may also be possible
in female sturgeons (Acipenseridae), lungfish (dipnoans) and bowfins (Amia), which also
shed eggs into the body cavity, and male hagfish and lampreys (agnathans), which similarly
deposit sperm in the body cavity and have urinogenital ducts leading into the body cavity
(Peake et al., 1997b).
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5.4.3.3 Intra-peritoneal surgery

Because of problems of regurgitation, abrasion and possibly predation, neither
stomach tags nor external tags can offer long-term security of attachment. For long-term
experiments, the solution is to insert the tag internally in the peritoneum. This has been done
successfully over the last twenty years with a number of marine and freshwater species, both
with and without the use of anaesthetics. Insertion need entail no more than making a small
surgical incision in the body wall and the whole process can often be completed within a few
minutes. Having had extensive experience of tagging several thousand southern bluefin tuna
(Thunnus maccoyii), CSIRO has perfected the technique to the stage where a trained
operator can insert an archival tag into an unanaesthetised fish in 50 s, a time that includes
injecting antibiotics and suturing the wound (Williams, 1992). Surgery is, however, a
delicate operation and field technicians need to be carefully chosen for their manual
dexterity and seaworthiness in order to ensure the quality control vital for a successful
tagging experiment (Gunn et al., 1994; Gunn, pers. comm.). Similar protocols have recently
been described for cod (Thorsteinsson, 1995) and Atlantic bluefin tuna (Block et al., 1998a).
Longer surgical operations have been carried out equally successfully in the laboratory with
both cod (Pedersen & Andersen, 1985) and rainbow trout (e.g. Kaseloo et al., 1996) using
controlled anaesthesia. The advantages and disadvantages of anaesthetics are considered in
Chapter 7, which also provides criteria for selecting the appropriate compound.

(a) Incision site and length

Once the fish is anaesthetised, an incision is made in the body wall with a scalpel
blade. For some species, such as serrasalmids, which have a mid-ventral cartilaginous
structure and long ribs, only one site is possible for the incision (Baras & Westerloppe,
1999). For other species there is a choice that can be made on the basis of a number of
criteria, such as innocuousness, healing dynamics and minimum expulsion risk. Because the
viscera lie in the dorsal part of the body cavity when the fish is turned upside down, mid-
ventral incisions are unlikely to cause direct internal damage. They are thus more frequently
chosen (e.g. Hart & Summerfelt, 1975; Bidgood, 1980) than lateral incisions, which may
puncture the gonads and prove more difficult to close, because they involve a thicker body
wall, longer healing times and lower survival rates. By contrast with mid-ventral incisions,
lateral incisions also cause systematic damage to bundles of striated muscle, for which
degenerative processes often outstrip tissue reconstitution (e.g. Roberts et al., 1973a, b, c;
Knights & Lasee, 1996). However, lateral incisions can be advantageous because the
transmitter exerts less pressure over tissues weakened by the incision (Tyus, 1988) and there
is less risk of expulsion through the wound than with a mid-ventral incision.

In order to minimise the trauma to the fish, the duration of healing and the risk of
expulsion of the tag through the wound, the surgical incision should be as short as possible.
Key factors governing incision length are the diameter of the transmitter, its length and the
flexibility of the fish body wall. The ratio of incision length to tag diameter is a convenient
index. Feasibility studies (Baras, 1992; Baras & Westerloppe, 1999; Thoreau & Baras,
1997) indicate that a ratio of 1.4-1.5 is appropriate for catfishes, which have a flexible body
wall. A ratio of 2.5 is more suitable for serrasalmids, which have a thick body wall and in
which a lateral incision is unavoidable (see above). For most cyprinids, salmonids and
cichlids a ratio of 1.6 to 1.8 is suitable (Baras, pers. comm.).

(b) Implant size and weight

There are finite limits on the size and weight of an implant, which are determined by
the size and species of fish to be tagged. The relevant factors are considered in Chapter 7.
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(c) Internal position of implant

Internal transmitters may move within the body cavity and cause a variety of damage,
such as gonad alteration (Chamberlain, 1979), internal haemorrhage (Bidgood, 1980),
bruised liver, eroded rectum (Schramm & Black, 1984), and puncture of the intestine (Baras
et al., in press). Tags should therefore be put in a position that offers the least probability of
movement, such as over the pelvic girdle, and as far as possible from hazardous locations,
such as the pericardium or the incision wound. Internal movements can be restricted by
suturing the tag to the body wall and this technique works well with the Atlantic cod
(Pedersen & Andersen, 1985) but not with channel catfish, in which it induces systematic
expulsion (Marty & Summerfelt, 1986). An aerial or umbilical passing through the body
wall can limit the movements of the tag inside the body, although the benefits of reduced
movement are offset by a higher risk of bacterial infection in the incision wound. In species
in which the implant becomes encapsulated by host tissues, tag movements are in practice
often restricted to the first days or weeks after surgery.

(d) Closing the incision

Surgical incisions can be closed with absorbable or non-absorbable sutures or
stainless steel staples. With larger fish (< 5 kg) it may be appropriate to close the incision
with a double row of sutures, one each for the peritoneum and skin (Summerfelt & Smith,
1990). There are several common suture patterns, of which the ‘simple interrupted’ and
‘interrupted horizontal mattress’ sutures are the strongest and most suitable for closing the
skin of fish. Each comprises a series of independent knots. The continuous suture, which
involves less trauma, is suitable for soft internal tissue but is less secure than interrupted
sutures because it has only two knots. The knot is the weakest point of a suture and if one
knot becomes untied the entire suture will pull apart. Summerfelt & Smith (1990) give
details of common sutures and knotting (their figures 8.2 to 8.4)

The commonest technique for closing abdominal incisions in fish is to suture at about
8 mm intervals with separate stitches right through the body wall (Hart & Summerfelt,
1975). For species with a rigid body wall or very thick skin, such as cichlids and catfish,
round ‘atraumatic’ needles should not be used because their use may result in more damage
and increase the time needed for tissue reconstitution (Baras & Westerloppe, 1999; Thoreau
& Baras, 1997). There is a choice between absorbable (plain or chromed catgut) and non-
absorbable (nylon or silk) filament. This often entails a trade-off between the risks of
expulsion of the tag through an unhealed incision at the time the filament becomes dissolved
and the risks of infection associated with a transcutaneous foreign body (Baras, 1992;
Knights & Lasee, 1996). The removal of permanent suture filaments after the incision has
healed may be advantageous, but fish have to be held in captivity for longer, and this is often
detrimental to the fish or the experiment. Braided silk may be an undesirable suture material
because fish have been observed to interfere with the healing process by grazing on stitches
on which algae start to develop (Thoreau & Baras, 1997).

Suturing is time consuming and alternative methods of closing the wound may be
desirable. Surgical staples can be used to close long incisions quickly (Mulford, 1984;
Filipek, 1989; Mortensen, 1990) but necessitate the removal of more rows of scales than
suturing and may render the fish more liable to fungal infection (Mellas & Haynes, 1985).
They are also permanent transcutaneous foreign bodies.

Commercial grade cyanoacrylate adhesives, applied to the opposed edges of a blotted
dry incision, enable the wound to close quickly and almost always suppress the
inflammatory response at the incision site (Nemetz & MacMillan, 1988). However, they
remain in place for a few days only and may result in more frequent loss of tags through the
incision (Petering & Johnson, 1991). Baras & Jeandrain (1998) used cyanoacrylate to close
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incisions in European eels, for which suturing induces frequent necrosis of the body wall.
They found, however, that the eels removed the adhesive within a few hours unless a
biological bandage (a freshly cut fin fragment) was applied over the incision before the
cyanoacrylate had dried.

A final option is to leave the abdominal incision open. This may cause ethical
problems and favour bacterial infection, but it compares favourably with suturing in respect
to survival, healing (Carmichael, 1991) and implant retention rate (Baras, 1992), especially
for short incisions in small fish (Baras et al., in press).

(e) Healing rates

Wound healing is a process of tissue reconstitution (Roberts et al., 1973a, b, c; Marty
& Summerfelt, 1986, 1990), whose dynamics are governed by factors, such as species, age,
temperature and food availability that control fish growth. Fast-growing tropical fish heal
incisions within less than two weeks (Baras & Westerloppe, 1999; Thoreau & Baras, 1997).
Temperate species require four to six weeks (e.g. Pedersen & Andersen, 1985; Baras, 1992)
and much longer at low temperatures (Ross & Kleiner, 1982; Knights & Lasee, 1996).
Juvenile fish heal much faster than adults do. Wound healing in juvenile African cichlids
and catfish (Baras et al., in press; Baras & Westerloppe, 1999) and Atlantic salmon parr and
smolts (Moore et al., 1990a) occurs in 7-8 days and 14 days, respectively, equivalent to the
resorption times of plain and chromed catgut.

5.4.3.4 Muscle implantation

To date most archival tag experiments with tuna have used tags implanted in the
body cavity, although the NMT archival tag was originally designed for insertion in the
dorsal muscles of tuna and billfish. A series of recent trials, using small (1-2 kg)_yellowfin
tuna (Thunnus albacares) and 1/25 scale stainless steel models of the NMT archival tag has
now, however, demonstrated that muscle insertion is a feasible alternative to peritoneal
surgery (Brill, unpublished report).

5.4.4 Effects of electronic tags on fish behaviour and physiology

There have been a number of studies on the impact of electronic tags on fish
behaviour and physiology since acoustic and radio tags first began to be used in the early
1970s. These are reviewed in Chapter 7 (Section 7.4).

5.5 RECOVERY OF DATA STORAGE TAGS (DSTs)

5.5.1 Publicity and rewards

In general, intensive tag recovery is not essential for either transmitting or
transponding tags because these tags require specialised receivers. Research programmes
are generally designed to ensure that the tagged fish are detected, either by placing receivers
in strategic locations, or by actively tracking using mobile tracking equipment. However,
tag recovery for data storage tags is essential as they do not transmit their position or
information and each individual tag may contain an enormous amount of data. Despite this,
few studies using electronic tags have directly examined whether the rate of recovery is
sufficient to produce data which is representative of the problem being studied.

As the cost of each individual data storage tag is high, only a relatively small number
may be used in any given research programme. This is offset by the amount of information
that can be retrieved from even a few tags. The number of tags recovered will improve
considerably with good publicity and reward systems in association with a good catch/stock
scanning programme. Recovery programmes for data storage tags should therefore include:



54

• an investigation of the likely geographic area where tags will be recovered
• advertising the tagging programme in the appropriate area
• adequate tag scanning programmes and sufficient sample sizes
• simple recognition of tagged fish in samples from external tags or marks
• clear instructions to fishermen
• an incentive to declare tags and information.

5.5.1.1 Investigation of the likely geographic area of recovery

Generally, programmes involving DSTs take into account the probability of re-
encountering tagged fish subsequently. In marine fisheries, the area of encounter is
potentially vast but can be reduced significantly with backup information from catch data or
conventional tagging studies. Pre-tagging surveys with conventional tags should be carried
out to provide a rough estimate of where the electronic tags will be recovered and what the
target fisheries are likely to be. Subsequently, standard fishing techniques can be applied to
recover tags or catches can be scanned in a similar manner to conventional tags.

For migratory fish species, the area of encounter can be predicted more accurately if
the migration routes are known and the fish can be intercepted at specific geographical
locations at known points in the life cycle (Klimley et al., 1998). The tendency of many
marine and freshwater species to home to specific spawning sites provides a good
opportunity to tag and recapture spawning adults in the same location in successive years.
This approach, which is likely to be particularly useful with anadromous fishes, such as
Atlantic salmon, which home to their natal rivers with a high degree of accuracy, has already
been applied to good effect with brown trout in Iceland. A large proportion (63 & 75%) of
trout from Lake Thingvallavatn, which were tagged on their spawning grounds in the River
Oxara in 1999 and 2000, were recovered in the same location during the following spawning
season (Sturlaugsson, pers. comm.). Tagging of kelts (spent adults) in rivers prior to their
return to the sea has been suggested as one way of providing information on oceanic
migrations of salmon (Anon 1997, 1998b). An alternative is to tag large smolts in rivers
prior to seaward migration (Anon 1998b) and a study of this type is planned in Iceland in
2002 (Sturlaugsson, J., pers. comm.).

5.5.1.2 Advertising the tagging programme

Initially, the objectives, tag type, secondary tag type (if used) and the rewards (if any)
should be clearly advertised. Prospective individuals who are likely to recover tags or be
aware of recovered tags (fishermen, fish processors, anglers etc) should be informed that
tags of different types may be present in the fish they handle. It is important to emphasise
the scientific value of the information contained in the tags (rather than the value of the tag
itself), as well as the overall benefits of the data for protecting and possibly enhancing stock
assessment and management.

Publicity can include:
Advertisements in national or local newspapers – if the tagging programme is locally

based, it is probably best to advertise only in local papers to emphasise the probable recovery
location of the tagged fish.

Posters – these should show the features which will identify a tagged fish (presence
of an external tag, fin-clip, mark etc) and a clearly identified contact for return of the fish or
the tag. Posters have been used extensively in conventional and electronic tagging studies
and placed prominently in fish processors and fishing ports. A selection of typical posters
advertising tagging programmes and rewards for recovery of various types of tags are
included in the CATAG web-site (http://www.hafro.is/catag).
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Public presentations – Experience has shown that direct interactions between
scientists and commercial fishermen or the public improve the rate of recovery of tags and
provide a more lasting impression of the objectives of the programme. Public presentations
should be directed at fishermen and fishing organisations, processors, local representative
groups and all users of the resource being studied.

Local interviews/contacts - again, direct contact with fishermen or other local
contacts allows any queries to be dealt with expediently and creates a valuable dialogue
between scientists and the public.

Subsequent reinforcement - reinforcing both the original message and the initial
contacts has been shown to be effective in obtaining tags which might otherwise not be
recovered, especially if tags may be recovered in more than one fishing season.

5.5.1.3 Tag scanning programmes and sample size

Even if the general area of encounter has been identified, there is still the problem of
tag retrieval. For marine fisheries, where shoal sizes may be large relative to the number of
tagged fish, large numbers of fish may need to be captured to ensure recovery of a single tag.
In general then, marine tagging programmes are usually associated with commercial
fisheries where large numbers of fish are available for examination. For anadromous fishes,
recoveries can be made in drift nets, traps, and fish ladders or by angling and a systematic
scanning programme at these recovery sites will greatly improve tag recovery.

Ideally, the entire catch should be examined for tags. If this is not feasible then a
sufficient proportion of the catch should be examined. Numbers will depend on the
estimated size of shoals, their temporal and geographic distribution and the number of tagged
fish released initially. Significant improvements could be made if entire catches were
routinely scanned for tags on board fishing vessels or in processing plants.

5.5.1.4 Simple identification of tagged fish in catches or samples

Clearly, catch scanning will only be effective if the tagged fish can be easily
identified from non-tagged fish. This implies that a tag is clearly identifiable, or that the
tagged fish is marked clearly with a secondary tag or mark. A message should be contained
within the DST to inform the captor of the country of origin, tagging agency, the contact for
tag return, information on rewards that may be available and any other instructions.

5.5.1.5 Clear instructions to fishermen and processors

Instructions on removing the tags and the procedures to be followed for recording
relevant information, or retaining the fish, should be issued well in advance of the tagging
period, and then reinforced while the fishery is taking place. For some research
programmes, it may, for example be important to recover the carcass of the fish to
investigate growth and condition, or determine whether spawning has taken place.

During intensive commercial fishing operations and in busy fish processing plants,
retrieval of tags should not interfere substantially with routine processing, or interfere with
commercial operations. If tag removal is simple, then more co-operation can be enlisted
from fishermen or fish processors who are most likely to come into contact with tagged fish.
This can be done on a contract basis or by organising a fee for tags recovered. In some
instances, the time available to fishermen or processors to retrieve tags may be short, and it
may be better to rely on trained technical personnel to scan landings and remove tagged fish.
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5.5.1.6 Incentive to declare tags

The value of the data recorded by even a single DST is significant. There should
therefore be a good incentive to return tags, particularly if tag recovery is dependent on
commercial fishermen or processors. The following incentives have been used extensively
in conventional tag recovery programme with varying degrees of success.

(a) Monetary rewards

This is a time honoured standard, although it is often difficult to decide on an
adequate monetary reward. If the intention is to retrieve transmitting tags for re-use, the
reward should be less than the cost of a replacement tag. For data storage tags the value
must be decided in relation to the cost of the tagging programme, the value of the data and
the effort needed to obtain tag recoveries, although this may be difficult to estimate in terms
of direct cost benefit. By way of example, CEFAS and its European partners offer a reward
of £25 (~40 Euros), payable in the local currency, for each data storage tag returned from
cod, plaice or rays. In contrast, ICCAT offers a reward of $1000 (U.S.) for the return of
each archival tag from its Atlantic bluefin tagging programmes (Prince & Cort, 1997). In
Iceland, the Marine Research Institute offers a reward of 4000 kroner (~44 euros) for the
return of each data storage tag, as well as 1000 kroner for the accompanying conventional
tag (Thorsteinsson, V., pers. comm.). The Institute of Freshwater Fisheries offers the same
reward for the return of each data storage tag and an extra reward of 500 kroner (~5 euros/
kg), if the fish is returned as well (Sturlaugsson, J., pers. comm.).

(b) Gifts

Gifts are often preferred as they are easier to administer and are often more
acceptable, particularly if they have a high ‘popularity’ value. In many parts of the world
institutes are moving towards offering T-shirts, sweatshirts, badges and peaked caps, all of
which have a collectable appeal.

(c) Information

Often, the incentive to return tags can be increased if there is a corresponding return
of information back to the individual recovering the tag, particularly if he/she is working
within the fishing industry. Generally, the information would be in the form of an
information leaflet outlining the objectives of the tagging study, information on the tagged
fish that was recovered and information on the overall results of the programme.

(d) Recognition

Publication of a list of individuals who have recovered tags in an institute or fishing
newsletter is often useful to advertise the tag programme and encourage tag recovery.

(e) Competitions and lotteries

As a general incentive, a lottery scheme can be a useful method to improve return
rates for tagged fish. The names of people who have returned tags are entered into a draw
and an overall winner, or winners, picked at random. This has the advantage that a
substantially more attractive prize can be offered for the return of tags or tagged fish. A tag
recovery lottery was carried out for a number of years by the North Atlantic Salmon
Conservation Organisation to provide an incentive to fishermen to return conventional tags
and improve the rate of tag return (NASCO, 1993). Iceland’s Institute of Freshwater
Fisheries operates a lottery for the return of data storage tags (as well as conventional tags)
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from salmonid fish (Sturlaugsson, J., pers. comm.). In the UK, CEFAS has operated a
lottery for fishermen who have returned tags deployed on plaice as part of an EC-funded
research project on plaice in the North Sea (Metcalfe, pers. comm.).

5.5.2 International collaboration

Tagging programmes involving highly migratory fish species, or stocks that are
exploited by several different national fleets, need special approaches for tag recovery.
Again, a high degree of advertisement and publicity should be established between national
co-ordinating agencies as outlined above. A separate reward scheme could be considered for
tags returned from non-national fisheries.

The tagged fish should be readily identifiable to the captor, particularly if the fish has
an internal DST. At the very least, a message should be contained within the DST to inform
the captor of the country of origin, tagging agency, the contact for tag return and information
on any rewards that may be available.

Considering the widespread use of conventional tags and the similarity of these tags
being used internationally, it is recommended that a special conventional tag be used with
fish containing internal electronic tags. These could be differentiated by colour, code or
shape and should be advertised widely, both nationally and internationally as being
specifically for this purpose.

Electronic mail and the World Wide Web should be encouraged as a method of
advertising tagging programmes that have the potential to generate tag returns in
international waters. The Web-site (http://www.hafro.is/catag) developed within this
Concerted Action will provide an international forum for informing other agencies of
ongoing or new tagging programmes and should go some way to stimulating co-operation in
returning tags.

5.6 APPLICATION TO FISHERIES

Electronic tags are now being widely applied in many areas of fish biology and
fisheries management. Generally, electronic tags are used to provide information that cannot
be obtained using conventional tags. The main areas of application are given below with
some specific examples quoted to illustrate the type of information that can be obtained from
electronic tags.

5.6.1 Investigating fish behaviour in relation to fishing activities

5.6.1.1 Behaviour of fish in relation to vessels and gears

The examination of fish behaviour in relation to fishing vessels and fishing gear is
one of the most important areas of application for electronic tags and one that is likely to
develop significantly in future. Fish senses are highly developed and apart from sight and
smell, fish can be extremely sensitive to even minute vibrations in the water or on the
seabed. Electronic tags allow for real time tracking of fish or groups of fish and provide
information on the reactions of these fish as the fishing vessels and gears are operating.

Telemetry studies in the late 1960s clearly showed that fish could detect and avoid
fishing gear by sight and by other senses when light intensities were inadequate for the fish
to see the gear. Shad (Alosa sapidissima) migrating up the Connecticut River reacted to
drifting commercial gillnets at ranges of 1-2 m and few were caught (Leggett & Jones,
1971). Similar Norwegian studies have shown that cod (Gadus morhua) can detect and
avoid a 30-m trawler approaching at a speed of 1-m s-1. The fish reacted to the noise of the
vessel at a range of 200 m and accelerated and swam out of its path when the range
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decreased to 100 m (Engås et al., 1991). In more recent experiments, Norwegian fisheries
scientists have made further observations of the reactions of cod to trawls using a fixed
hydrophone array with radio-telemetry buoys to transmit data to a research vessel (Engås et
al., 1998). The system has also been used to investigate the reactions of edible crabs
(Cancer pagurus) to baited pots (Skajaa et al., 1998).

5.6.1.2 Improving fishing gear efficiency

There have been a number of specific studies to investigate the efficiency of fishing
gears using electronic tags. In the 1970s, for example, the Fisheries Laboratory, Lowestoft
(now CEFAS) in the UK carried out a major investigation to measure the efficiency of the
Granton otter trawl on a flat sandy ground in the southern North Sea. The work was carried
out over seven years and involved releasing several hundred plaice (Pleuronectes platessa)
tagged with small transponding acoustic tags (Harden Jones et al., 1977). One research
vessel with a sector scanning sonar was used to observe the fish; a second vessel was used to
tow the trawl. The results indicated that modifications of the gear could increase the
efficiency of the trawl from 44% to 80% (Harden Jones & Arnold, 1982). These fishery-
independent estimates of gear efficiency appear to be unique for finfish, although several
studies have subsequently been undertaken with shellfish (see Section 5.6.2.2); more
applications could be developed using the available technology.

5.6.1.3 Improving estimates derived from acoustic survey

Stock assessments of many fish species are now routinely carried out using acoustic
technology. The results of these assessments are used to provide management advice for
many of the most important marine stocks. However, validating the results of the acoustic
trials is extremely time consuming and results in large expenditure of capital, ship’s time and
manpower. Specifically, biomass assessments from interpretation of the acoustic signals
from shoals of fish may alter significantly during active migrating and feeding periods.

Electronic tags have been applied to investigate the accuracy of acoustic assessments
for gadoid fishes. Biomass may be underestimated, if no account is taken of the reductions
of 2-5 dB in average target strength (TS) caused by changes of attitude (pitch or tilt angle) of
the fish (Foote, 1980), or changes in swimbladder volume caused by feeding or gonad
maturation (Ona, 1990). Ultrasonic tracking studies in the southern North Sea have shown
that cod are neutrally buoyant at the top of their vertical range but negatively buoyant on the
seabed. These studies indicate that vertical migration may be accompanied by systematic
and possible even larger changes in TS than those associated with feeding or gonad
maturation (Arnold & Greer Walker, 1992). Negative buoyancy, which has also been
demonstrated in northeast Arctic cod fitted with data storage tags (Godø & Michalsen,
2000), is accompanied by compensatory changes in attitude that may further reduce TS.
Changes in tilt angle have not yet been measured successfully with electronic tags, although
some trial experiments have been attempted in Norway (Michalsen, pers. comm.) and
Iceland (Thorsteinsson, pers. comm.) using external attachment and surgical implantation,
respectively.

Considering that acoustic data are now used extensively to provide information on
biomass, applications that lead to improved efficiency and applicability of these estimates
are essential.
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5.6.2 Investigating fish migration, migration routes and distribution

5.6.2.1 Vertical and horizontal movements of oceanic fish

Although conventional tagging studies have provided much information on the extent
of the migrations of many oceanic species, they can provide little information on behaviour
or movement of the fish between tagging and recapture. Electronic tags are, however, now
being used extensively to study both vertical and horizontal movements of a wide range of
oceanic fish and to link behavioural changes with specific biological or environmental
events. Acoustic tracking has been undertaken with salmon (Onchorhynchus spp.) and a
number of large pelagic species such as tuna (e.g. Yuen, 1970; Block et al., 1997; Josse et
al., 1998; Brill et al., 1999; Dagorn et al., 2000; Lutcavage et al., 2000; Gunn & Block,
2001), billfish (Carey & Robison, 1981; Block et al., 1992a & b; Brill et al., 1993; Marcinek
et al., 2001) and sharks (e.g. Gunn et al., 1999; Sundström et al., 2001; Voegeli et al., 2001).
The tuna studies have included several investigations of behaviour associated with fish
aggregating devices (FADs) (Holland et al., 1990b; Cayré, 1991; Marsac & Cayré, 1998;
Dagorn et al., 2001).

Acoustic tracking has shown that large pelagic species - tuna, billfishes, sharks -
exhibit a number of patterns of vertical migration, which appear to be associated with
feeding, thermoregulation, or the avoidance of limiting oxygen levels. Some species, such
as skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and giant bluefin (T.
thynnus) tuna (Lutcavage et al., 1999) and blue marlin (Makaira nigricans) (Holland et al.,
1990a), appear to be confined to the thermocline and the mixed surface layer of the ocean.
These species swim nearer to the surface at night than by day. Others, such as the bigeye
tuna (T. obesus), move rapidly up and down the water column apparently without regard for
the thermocline. Bigeye forage in deeper, colder water by day, however, and need to make
regular, rapid ascents back into warmer surface waters to recover lost heat (Holland et al.,
1992; Holland & Sibert, 1994). Swordfish (Xiphias gladius) also make extensive diel
vertical migrations, swimming deep by day and coming near the surface at night. They
appear to follow isolumes and have been recorded at midday depths of over 600 m in well-
oxygenated water in the Atlantic (Carey & Robison, 1981; Carey, 1990). Some sharks also
appear to follow isolumes (e.g. Nelson et al., 1997).

Blue sharks often break the surface with the dorsal fin and this behaviour allowed the
late Frank Carey of the Woods Hole Oceanographic Institution (USA) to track several sharks
directly by satellite. The transmitter (which was based on a design by the Sea Mammal
Research Unit, Cambridge, UK) was bolted through the dorsal fin and carried a radio
antenna on top of a long raked and streamlined mast (Kingman, 1996) (see Section 5.4.2.1
(a)). Three individuals were tracked over long distances in this way and their movements
related to those of the Gulf Stream. A similar approach was adopted with whale sharks
(Rhincodon typus) by Eckert & Stewart (2001), who used towed radio transmitters of three
different designs, each attached to the shark by a monofilament tether and sub-dermal darts
embedded close to the midline near the first dorsal fin. Direct satellite telemetry has limited
application, however, because most species do not swim sufficiently close to the surface.
Significant new discoveries are therefore more likely to come from the widespread use of
other techniques, such as data storage tags (see Section 5.2.4), which have already been used
with school sharks (West & Stevens, 2001), and pop-up satellite-detected tags (see Section
5.2.5).

CSIRO scientists from Hobart, Australia began an archival tagging programme to
study the movements, behaviour and physiology of juvenile southern bluefin tuna (Thunnus
maccoyii) in 1993 (Gunn et al., 1994). Japanese researchers initiated a similar programme
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with juvenile Pacific bluefin (T. orientalis) in 1995 (Kittigawa et al., 2000; Inagake et al.,
2001). North American scientists began two programmes in the western North Atlantic in
1996 and 1997. Large Atlantic bluefin tuna (T. thynnus) have been variously tagged with
archival tags, single-point satellite-detected pop-up (PST) tags, or pop-up archival (PSAT)
tags. The aim is to investigate migration and spawning site fidelity and test the current
ICCAT management hypothesis that there are discrete eastern and western stocks (Block et
al., 1998a, b; Lutcavage et al., 1999). Archival tags (Yamashita & Miyabe, 2000) and pop-
up tags (DeMetrio, 1999, 2000) have also been used with Atlantic bluefin in the
Mediterranean. Substantial progress has already been made with all three species (Gunn &
Young, 2000; Kittigawa et al., 2000; Block et al., 2001a, b; Inagake et al., 2001), which
have been shown to make extensive feeding forays and rapid spawning migrations, some
trans-oceanic in scale. Movements are related to oceanographic features and there are
already sufficient data to show that bluefin tuna tagged off the east coast of the USA are
vulnerable to fishing on both sides of the North Atlantic, with obvious implications for
management. Gunn & Block (2001) and Arnold & Dewar (2001) provide more detailed
summaries of recent progress.

Japanese studies with acoustic tags in the central Bering Sea and North Pacific
indicate that the six species of Pacific salmon (sockeye, chum, pink, coho, chinook and
steelhead) occur mostly in the upper 50 m of the water column, although making occasional
forays to greater depths (150-200 m max.). Sockeye, pink, coho and steelhead are restricted
to the top 10 m for over 70% of the time and chum salmon also swim near the surface;
chinook salmon occur at depths of 20-40 m. Acoustically tagged individuals of these six
species showed few regular patterns of vertical movement (Ogura, 1994, 1997; Ogura &
Ishida, 1992, 1995). Seasonal and diel patterns of vertical movement were, however,
recorded in other Japanese studies, in which chum salmon (Onchorhynchus keta) were fitted
with timed data recorders (Ogura, 1997; Ishida et al., 1998; Tanaka et al., 1998). The fish
were observed to swim consistently deeper by day than by night and seasonal differences in
swimming depth were also apparent. The fish remained in cool, deep (100-200 m) water
during autumn, but swam at shallower depths in winter after the surface waters had cooled
down (Ishida et al., 1998). Repeated diving in the top 60 m during the day was a
pronounced feature of the behaviour of three chum salmon migrating from the Bering Sea -
where 25 fish were tagged - to Hokkaido during the summer of 1998 (Wada & Ueno, 1999).
The fish, which migrated distances of 2500 to 3000 km over periods of 47 to 77 days,
remained near the surface at night, where they were probably feeding. Similar patterns of
vertical movement have been deduced from long-term records obtained from eight
individual Pacific salmonids tagged with small temperature loggers (Walker et al., 2000).
After an apparent refractory period of variable length, the records all showed large regular
fluctuations in temperature consistent with the fish moving towards the surface at night,
possibly to feed, and descending periodically to deeper, cooler water during the day.

5.6.2.2 Behaviour of shelf seas fishes

There has been a substantial amount of fish tracking work on the European
continental shelf over the last 25 years, which has significantly advanced our understanding
of the behaviour of free-ranging fish in the open sea. A wide range of species has been
studied with acoustic tags. These include European eels (Anguilla anguilla) (e.g. Tesch,
1974; Tesch et al., 1991; McCleave & Arnold, 1999), dogfish (Scyliorhinus canicula) (Greer
Walker et al., 1980), plaice (Pleuronectes platessa) (Greer Walker et al., 1978; Metcalfe et
al., 1993), sole (Solea solea) (Greer Walker et al., 1980; Lagardère et al., 1988, 1990) and
cod (Gadus morhua) (Hawkins et al., 1974; Arnold, 1981; Arnold et al., 1994; Godø, 1995;
Svendsen, 1995). Some work has also been done with artificially matured European eels in
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the open ocean in an attempt to locate the spawning grounds in the Sargasso Sea (Fricke &
Kaese, 1995) and similar experiments have also been attempted in the Pacific (Aoyama et
al., 1999).

Acoustic tags have been used in other parts of the world to investigate the local
movements of various species of fish and shellfish. Research on finfish has encompassed
several studies of cod (G. morhua) in near-shore waters in Newfoundland (Clark & Green,
1990; Wroblewski et al., 1994, 1995, 2000; Green & Wroblewski, 2000). There have been
similar studies of a number of other teleosts, including shad (Alosa sapidissima) (Dodson &
Leggett, 1973, 1974), lingcod (Ophiodon elongatus) (Yamanka & Richards, 1993),
yellowtail rockfish (Sebastes flavidus) (Pearcy, 1992) and deepwater rockfishes (S.
chlorosticus and S. paucispinis) (Starr et al., 2000). There have also been investigations of
the behaviour of white goatfish (Mulloides flavolineatus) in a fisheries conservation zone in
Hawaii (Holland et al., 1993) and extensive studies of coral reef fish ecology in Australia
(Zeller, 1997, 1998, 1999; Zeller & Russ, 1998).

Acoustic tags have also been used to study the behaviour of various species of
crustacea (Lund & Lockwood, 1970; Monan & Thorne, 1973; Chapman et al., 1975;
Hernnkind, 1980; van der Meeren, 1997; Arnold et al., 1990; González-Gurriarán & Freire,
1994; Freire & González-Gurriarán, 1998) and to investigate the reactions of crabs (Cancer
pagurus) to baited traps (Skajaa et al., 1998). There have also been studies of the behaviour
of several cephalopods including ommastrephid (Nakamura, 1991, 1993) and loligid squids
(O’Dor et al., 1994; Sauer et al., 1997) and Nautilus (Ward et al., 1984; Carlson et al.,
1984). Electromagnetic tags, which have a much shorter detection range, but which avoid
the attenuation and reflection to which acoustic transmissions are subject close to the seabed,
have been used in a number of other studies. In Australia, for example, Jernakoff et al.
(1987) used an automatic tracking system to track as many as 14 western rock lobsters
(Panilurus cygnus) for up to 3 weeks and quantify their nocturnal foraging distances. Using
the same system, Jernakoff & Phillips (1988) investigated the effect of a baited trap on the
foraging movements of the same species; they also estimated the number of animals
responding to the trap and compared the number of approaches with the number of animals
captured. Similar studies have subsequently been undertaken in Europe, using a more
advanced version of the Australian system (Collins, 1996; Smith et al., 2000). These studies
have investigated diel and seasonal patterns of activity of Homarus gammarus on an
artificial reef (Smith I.P. et al., 1998a & b, 1999), as well as catchability in traps (Collins et
al., 2000).

Data storage tags have been used extensively with demersal species in the eastern
North Atlantic and adjacent seas to investigate vertical and horizontal movements of
individual fish over much longer periods than can be achieved with acoustic tags. Rates of
recovery have generally been high (> 40% in some instances) and the data have provided
important new insights about seasonal distribution, as well as behaviour during feeding,
migration and spawning (Arnold & Dewar, 2001). Most programmes have concentrated on
plaice (Pleuronectes platessa) and cod (Gadus morhua), although there has also been some
work with the thornback ray (Raja clavata) in the Irish Sea and Thames estuary (Arnold &
Dewar, 2001; Buckley, pers. comm.) and the spider crab (Maja squinado) in Spain (Freire &
González-Gurriarán, 1998; Freire et al., 1999).

Extensive pressure recordings from plaice tagged with data storage tags in the North
Sea have provided a way to investigate population distributions and mechanisms of
horizontal migration, as well as seasonal patterns of vertical movement. Geographical tracks
of individual plaice can be reconstructed over many months, from the vertical movements of
the fish itself (Arnold & Holford, 1995; Metcalfe & Arnold, 1997), or hydrostatic data
recorded when the fish remains on the seabed for one (~13 h) or more tidal cycles (Metcalfe
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& Arnold, 1997; Metcalfe et al., 1999). The reconstructed tracks have provided new
information on the distribution of plaice populations in relation to known spawning grounds
in the North Sea (Hunter et al., 2001). The pressure measurements have shed new light on
selective tidal stream transport (Greer Walker et al., 1978), whose use appears to be
restricted to areas of fast, directional tidal streams where the fish can save energy (Hunter et
al., 2001). Pressure data have similarly provided new information on the patterns of vertical
movement of cod on Faeroe Plateau (Steingrund, 1999), at Iceland (Thorsteinsson, 1995;
Thorsteinsson & Marteinsdottir, 1998), and off northern Norway (Godø & Michalsen, 2000),
as well as in the North Sea and Irish Sea (Righton et al., 2000, 2001a & b). Data from the
North Sea show that some cod are sedentary for long periods during the summer (Righton et
al., 2000, 2001a & b). Rates of vertical movement recorded with data storage tags in the
Barents Sea, Irish Sea and North Sea indicate that cod are negatively buoyant over much of
their vertical range (Godø & Michalsen, 2000; Righton et al., 2001b). These observations,
which have important implications for target strength and acoustic surveys, agree with
previous observations of acoustically tagged cod in the North Sea (Arnold & Greer Walker,
1992). Comparatively little has yet been learned from archival tag data about the horizontal
migrations of cod. But investigations by the Institute of Marine Research in Reykjavik have
shown that sexually mature cod tagged on the spawning grounds to the southwest of Iceland
move off the continental shelf in early summer, descending to depths of 200-300 m and
more. And the records of 11 tags, which spanned two successive spawning seasons, showed
that the cod returned to the continental shelf between February and April the following year,
remaining in shallow water for periods of 14 to 33 days. Most fish showed extensive
vertical movements in deep water, but much reduced activity in shallow water during the
spawning season (Thorsteinsson & Marteinsdottir, 1998).

5.6.2.3 Coastal waters and estuaries

In Europe, acoustic tags have been used to follow the movements of Atlantic salmon
in coastal waters on their way back to spawn in freshwater. Tracking has been undertaken in
UK (Smith et al., 1981; Potter, 1985) and Swedish waters (Westerberg, 1982a & b; Døving
et al., 1985). The work has shown that adult salmon can maintain a compass course over
quite large distances, irrespective of current or tidal stream direction (Smith et al., 1981). It
has also shown that salmon may exhibit diel vertical migrations swimming close to the
surface during daylight, but descending to depths of as much as 40 m at night. Individual
fish may also show large vertical movements near river mouths and it is suggested that this
behaviour may be related to olfactory discrimination of fine scale hydrographic features
during the search for the home stream (Døving et al., 1985). The European salmon tracking
work has been paralleled by similar work with Pacific salmon on the west coast of North
America and also in Japan (for references see Arnold & Dewar, 2001; Arnold & Lundgren,
2002).

Data storage tags have been used on salmonids in Iceland since 1994 and in the
Baltic since 1995, with recapture rates of 50 to 70% (Sturlaugsson, 1995; Karlsson et al.,
1996; Sturlaugsson & Thorisson, 1997; Westerberg et al., 1999a; Karlsson et al., 1999). The
main aim of Icelandic work on Atlantic salmon (Sturlaugsson, 1995; Sturlaugsson &
Thorisson, 1997; Sturlaugsson & Gudbjornsson, 1997) was to study the homing migration in
coastal waters and the Baltic study (Karlsson et al., 1996; Karlsson et al. 1999; Westerberg
et al. 1999a & b) had similar aims. In Iceland returning salmon were captured and tagged in
the estuaries of their home rivers. They were then transported to a number of release sites at
distances of 25-420 km from the capture site by the shortest sea route. Some fish were
released at sea at distances up to 200 km from the nearest shore and some salmon were
tagged with ultrasonic tags as well as data storage tags (Sturlaugsson, J., pers. comm.). All
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these fish were thus repeating the final stages of their return migration from the sea to
freshwater. In the Baltic, in contrast, salmon were caught at a variety of locations before
they had returned to their spawning rivers; these fish were released at the capture location
immediately after tagging. Both studies confirmed that migrating salmon swim within a few
metres of the surface (≤2 m for 90% of the time), allowing satellite measurements of sea
surface temperature (SST) to be used to deduce location and movement. Most salmon
migrated close to the coast at Iceland and also in the Baltic. At Iceland depth and salinity
measurements showed that some fish entered other estuaries and rivers before reaching their
home river again (Sturlaugsson & Thorisson, 1997). At Iceland, although not in the Baltic,
there was evidence of a diel rhythm of vertical movement in the sea. The fish swam deeper
at night, although the majority of the deepest dives occurred around sunset and sunrise.
Most dives were rapid and shallow, but some penetrated the thermocline (Sturlaugsson &
Thorisson, 1997). The maximum recorded depths were 153 m (Sturlaugsson &
Gudbjornsson, 1997) in coastal waters and 323 m in oceanic waters (Sturlaugsson, pers.
comm.).

The Icelandic investigations also included studies of sea trout (Salmo trutta L.)
(Sturlaugsson & Johannsson, 1996; Sturlaugsson & Johannsson, in press) and anadromous
arctic char (Salvelinus alpinus) (Sturlaugsson et. al. 1998). Sea trout were caught and tagged
in freshwater (see Section 5.3.3.4) in early May, using internal or external data storage tags
and external conventional tags. In 1995 the electronic tags were programmed to record
depth and temperature at intervals of 4 h for periods up to 4 months. This was sufficient to
cover the remainder of the pre-migratory period in freshwater, the whole of the sea-going
feeding migration (33 to 93 days), and a subsequent period after the fish had returned to
freshwater. The data provided new information on growth, the timing of movements
between fresh and saltwater, and vertical distribution in the sea. They showed that, like
salmon, sea trout spend most of their time in the top of the water column (≤ 7 m for 91% of
the time), with occasional deeper dives (Sturlaugsson & Johannsson, 1996; Sturlaugsson &
Johannsson, in press).

A number of other studies (e.g. Moser et al., 1991; Moore et al., 1995; Lacroix &
McCurdy, 1996; Moore et al., 1998; Voegeli et al., 1998; Lacroix & Voegeli, 2000) have
used electronic tags to investigate the estuarine movements of salmon and sea trout
migrating to sea at the end of the freshwater phase of the life history. Complementary
studies have examined the upstream movements of adult fish returning from the sea. These
studies have used chains of moored sonar buoys, which transmit a radio signal on receipt of
an underwater signal from an acoustic tag. Radio transmissions from several buoys are
received by an automatic listening station (ALS), which records the date and time at which
each signal is received, as well as the identity of the sonar buoy and an audio recording of
the pulse rate of the tag. The system has been used to track the movements of adult Atlantic
salmon (Salmo salar) and sea trout (S. trutta) returning to spawn in freshwater (e.g. Potter,
1988; Potter et al., 1992; Mee et al., 1996) using CART tags (see section 5.2.3.1) inserted in
the stomach (Solomon & Storeton-West, 1983).

5.6.2.4 Freshwater

Many important features of the migratory behaviour of anadromous and catadromous
fish in freshwater have been elucidated with PIT tags (e.g. Prentice et al 1990a, b) radio tags
(e.g. Solomon & Storeton-West 1983, Laughton & Smith 1992) or data storage tags.
Specific studies have been carried out to investigate the movements of adult and juvenile fish
in relation to fish passes, hydroelectric generation stations, barrages (e.g. Olsen et al 1990.,
Moore et al., 1996) and a wide variety of man-made obstacles including thermal and
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chemical effluents. The effectiveness of hook and release (catch and release) of rod caught
Atlantic salmon has been investigated as a conservation measure in many countries. Recent
studies using radio tags have indicated that a large number of fish survive for several months
after release and some of them spawn (Webb 1998). As a result, hook and release has been
instigated as a management measure in many salmon rod fisheries in Europe, the USA and
Canada.

Pressure sensitive radio transmitters have been used to monitor depth selection by
rainbow and brown trout in lake systems in Montana USA (Williams & White 1990).
Demers et al. (1996) used electromygram biotelemetry to determine the activity patterns of
largemouth and smallmouth bass in the USA. Telemetry studies have been carried out to
monitor the behaviour of important coarse fish populations in Ireland (Caffrey et al., 1996;
Donnelly et al., 1998). In particular, the homing and territorial behaviour of pike (Esox
lucius), tench (Tinca tinca), bream (Abramis brama) and rudd x bream hybrids has been
described. These studies have shown that coarse fish will travel long distances to return to
their own territory. Recent investigations have been carried out in Ireland to investigate
multiple capture of coarse fish in competition stretches of important coarse angling venues
and to assess the impact on the populations (Caffrey, pers. comm.) while the efficiency of
migration of pike-perch through a bypass channel on the River Danube has been examined
using radio tags (Schmutz et al., 1998).

In addition to providing information on the behaviour of fish and their immediate
environment during the sea-going phase of the life history (see Section 5.6.2.3), Icelandic
data storage tag studies with sea trout (Salmo trutta) have also produced new information on
rhythmic patterns of behaviour in freshwater during early summer, autumn and winter
(Sturlaugsson & Johannsson, 1996). Similar studies with arctic char (Salvelinus alpinus),
conducted annually since 1997, have given valuable information on the behavioural ecology
of both anadromous and non-anadromous fish in freshwater (Sturlaugsson et al., 1998).
Data storage tags have also been used in freshwater to record the behaviour of non-migratory
brown trout (Salmo trutta) throughout the year, as well as the migratory behaviour of
Atlantic salmon. The brown trout studies, which were conducted in Lake Thingvallavatn,
the largest natural lake in Iceland, provided detailed information on spawning and feeding.
The Atlantic salmon studies, which were carried out in lakes and rivers, used double tagging,
with data storage tags and radio transmitters attached to the same fish (Sturlaugsson, J., pers.
comm.).

5.6.3 Assessments of predation and other multi-species interactions

Despite the significance of multi-species interactions, this area of fisheries biology
and management is poorly described and understood. Most assessments are carried out on a
stock by stock basis. Attempts to add extra parameters to account for interactions between
stocks generally lead to extremely complex analyses and increased uncertainty in results.
This is mainly due to the lack of reliable data on real rather than simulated interactions.
Despite this, fishery scientists are becomingly increasingly dependent on the results of these
analyses to provide advice to managers. Studies using electronic tags can be applied to
describe real interactions and the scale on which these interactions occur.

5.6.3.1 Predation by other fish species

With the exception of deep-sea scavengers and some preliminary work with sharks
(Klimley et al., 1998; Goldman & Anderson, 1999) and tuna (Laurs et al., 1977; Josse et al.,
1998), electronic tags have been little used to date to study feeding and predation of fish in
the open sea. Aberdeen University (in the UK) has used baited acoustic tags (see Section
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5.4.3.1) to study the foraging behaviour of grenadiers (Coryphaenoides spp.) and other deep-
sea fish at various oligotrophic and eutrophic sites in the Pacific and Atlantic oceans (Priede
et al., 1990, 1994a, b, c; Collins et al., 1998). Using this technique to measure times of
arrival and departure of fish from the vehicle, it has been possible to show that grenadiers are
active scavengers, which move independently of the abyssal currents. Population densities
are higher at eutrophic sites than oligotrophic sites but - in accordance with optimal foraging
theory - staying times are significantly longer at oligotrophic sites. Staying times also vary
seasonally and appear to reflect seasonal variations in the supply of food reaching the ocean
floor. Application of this technique might be expected to produce useful results in the study
of multi-species interactions in shelf seas.

5.6.3.2 Interactions between fish and sea birds

Archival tags have been used to study the feeding ecology of oceanic sea birds alone
(e.g. Tuck et al., 1999) or in combination with satellite telemetry tags (e.g. Weimerskirch et
al., 1994). Foraging location has been provided by the satellite tag (e.g. Jouventin &
Weimerskirch, 1990; Jouventin et al., 1994), or by a light sensor in the archival tag.
Foraging behaviour has been deduced from diving profiles (e.g. Wilson et al., 1991) or
recorded by an ingestible temperature sensor (Wilson et al., 1992), which can be recovered
by stomach flushing when the bird returns to the nest. These techniques have revealed quite
a lot about seasonal and diurnal patterns of feeding activity in sea birds, which are known to
prey on important commercial fish species and interact with fisheries. Important information
has been obtained on rates of capture of individual prey items and the quantity of food
ingested during foraging excursions (e.g. Bost et al., 1997). Internal recorders have proved
particularly useful by revealing characteristic patterns of temperature in the stomach
(Weimerskirch & Wilson, 1992) or oesophagus (Charrassin et al., 2000) following feeding.

Radio telemetry has been used to investigate the foraging activities of cormorants and
shags (Phalacrocorax spp.), foot-propelled pursuit divers that feed on sandeels (Ammodytes
spp.) and other marine fish, and do not range too far from their breeding colonies. Changes
in signal characteristics indicate when the bird is at the colony or away feeding; breaks in
signal transmission indicate when the bird is diving in pursuit of prey (Wanless & Harriss,
1992; Wanless et al., 1993). Combined with automatic electronic balances, which measure
adult body mass before and after a foraging trip (Grémillet et al., 1997) it is now possible to
measure daily food intake and foraging effort. This in turn allows calculation of catch per
unit of effort, gross foraging efficient and parental investment at different breeding stages
(Grémillet, 1997).

5.6.3.3 Interactions between marine mammals and fish

Telemetry investigations using electronic tags on seals in UK and Antarctic waters
and whales in the Arctic, have enormous potential for investigating predation of marine
mammals on fish and determining how feeding distribution compares with that of fish and
fishing fleets (Harwood, 1992). The diving and foraging behaviour of grey seals
(Halichoerus grypus) has been studied in the northern North Sea, using a combination of
depth-telemetering acoustic tags, VHF radio tags, which transmit when the animal is on the
surface, and satellite telemetry (e.g. Thompson et al., 1991; McConnell et al., 1992).
Analysis of diet and dive data shows that grey seals feed almost exclusively on benthic or
demersal fish, foraging exclusively on or near the seabed. Sandeels and large gadoids (cod,
whiting, haddock, saithe and ling) dominate the diet. Off the east coast of England grey
seals concentrate their foraging activities over areas of gravelly sand. Grey seals are
observed to dive directly beneath dense assemblies of feeding seabirds - mostly gannets
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(Sula bassana), kittiwakes (Rissa tridactyla), puffins (Fratercula arctica), guillemots (Uria
aalge) and shags (Phalacrocorax aristoteles) - and may then be feeding on the deeper parts
of shoals, or on predatory fish (Thompson et al., 1991).

These mammalian studies emphasis the importance of understanding behaviour and
spatial dynamics in any quantitative analysis of predator-prey interactions (Croxall et al.,
1985). They give some idea of what might be possible, if electronic telemetry was applied to
investigating comparable fisheries problems.

5.6.4 Physiological ecology

Specialised sensors have been developed to monitor a variety of physical and
physiological variables in free-swimming fish. Most been custom built for specific
applications and few are available in commercially produced tags. EMG tags with radio
transmitters for use in freshwater are an exception (e.g. Demers et al., 1996; Kaseloo et al.,
1996).

5.6.4.1 Physical sensors

Direct measurements of swimming speed have usually been made with mechanical
devices (e.g. wands, drogues or propellers), whose size has limited application to sharks
(Nelson, 1976, 1978; Standora and Nelson, 1977; Sundström and Gruber, 1998), and large
pelagic teleosts, such as tuna and marlin (Block et al., 1992a, 1992b). The biomorph sensor
used with brown trout (Young et al., 1972) and the rolling ball device developed by SINTEF
(Holand et al., 1974; Holand, 1987) were exceptions. Non-mechanical tail beat frequency
sensors have however, been developed for smaller fish (Stasko and Horrall, 1976; Ross et al,
1981; Voegeli and Pincock, 1981) and juvenile sharks (Lowe et al., 1998). Recently,
differential pressure measurements have been used to telemeter tail beat frequencies from
European sea bass (Dicentrarchus labrax) (Aitken et al., 2001; Webber et al., 2001).

Mechanical compasses have been developed to record swimming direction in both
large sharks (Nelson 1976, 1978) and small teleosts (Mitson et al., 1982; Pearson and
Storeton-West, 1987), such as salmon (Potter, 1985) and plaice (Harden Jones and Arnold,
1982; Metcalfe et al., 1993). Other custom-built sensors have been developed to measure
key environmental factors, such as salinity (Priede, 1982) and dissolved oxygen
concentration (Priede et al., 1988).

5.6.4.2 Physiological sensors

Many physiologiacal studies have involved acoustic telemetry of one, or more
correlates of metabolism (Lucas et al., 1993), such as heart or respiration rate (Oswald,
1978). Heart rate has been recorded in a variety of freshwater species, which have included
salmon (Kanwisher et al., 1974), trout (Priede and Tytler, 1977; Priede & Young, 1977) and
pike (Armstrong et al., 1989). In the sea, measurements have been made with plaice
(Kanwisher et al., 1974; Storeton-West et al., 1978), sole and bass (Sureau and Lagardère,
1991), cod (Kanwisher et al., 1974; Wardle and Kanwisher, 1974), mackerel (Kanwisher et
al., 1974), and lemon sharks (Scharold and Gruber, 1991). Tail beat frequency and measures
of swimming speed (see Section 5.6.4.1) have also been used to estimate energetic costs and
similar studies have been conducted with cephalopods, using acoustic tags to telemeter
measurements of swimming jet pressure (e.g., Webber and O’Dor, 1986; O’Dor et al. 1994;
Aitken et al., 2000) .

Temperature has been measured in tunas to assess their capacity for thermoregulation
and document the extent to which body temperatures are elevated above ambient (Carey &
Lawson, 1973; Marcinek et al., 2001). Similar studies have been carried out with other
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endotherms, such as swordfish (Carey and Robison, 1981), blue marlin (Block et al., 1992a)
and sharks (Carey et al., 1982; Carey and Gibson, 1987; Lowe & Goldman, 2001). Using a
combination of depth and muscle temperature transmitters, Holland and colleagues
demonstrated that elevated body temperatures in bigeye tuna resulted from physiologically
controlled short-term changes in whole-body thermal conductivity (Holland et al., 1992;
Holland & Sibert, 1994). Visceral temperatures have also been investigated in several
species of sharks in relation to feeding physiology (Carey et al., 1981, 1984; McCosker,
1987).

Behavioural activity has been investigated in a variety of marine and freshwater fish
using electromyograms (EMG) recorded by acoustic (Rogers et al., 1984; Wolcott & Hines,
1989; Dewar et al., 1999) or radio (Demers et al., 1996; Kaseloo et al., 1996) telemetry tags.

5.6.4.3 Interactive tags

In addition to direct measurements of physical and physiological variables, there have
been at least two attempts to investigate sensory physiology by altering the local magnetic
field around a free-swimming fish. In each case a field generator has been combined with an
electronic tag, such that the magnetic field could be switched on and off remotely under
controlled conditions (Westerberg, 1982a; Yano et al., 1996, 1997).

5.6.5 Aquaculture and sea ranching

Electronic tags have only been used in aquaculture relatively recently, with the
application of fixed omni-directional hydrophone arrays to the problem of determining the
position of fish within or around fish farm cages (Holand, 1987; Lagardere et al., 1988;
Bjordal & Johnstone, 1993). Recent studies have also begun to investigate how activity
varies with social factors, such as fish density (Juell & Westerberg, 1993), and
environmental factors (Lagardère et al., 1990). PIT tags have been used to monitor activity
of fish at demand-feeders and investigate the effects of dominance hierarchies on feeding
and growth rates (Brännäs & Alanärä, 1993). Some work has also been done on the
application of heart rate transmitters in halibut (Hippoglossus hippoglossus) farming
(Rabben & Furevik, 1993). Sea ranching applications are also recent and have been used in
comparative studies of the local migratory behaviour of wild and farmed Atlantic salmon
(Heggberget et al., 1993) and the extent of upstream migrations between ranched, escapee
and wild salmon (Heggberget et al., 1996). Collins et al. (1997, 2000) discuss applications
of tagging, tracking and telemetry in artificial reef research.

5.7 FUTURE APPLICATIONS AND DEVELOPMENTS

5.7.1 Introduction

Electronic tags have a major role to play in fisheries science in the next century and
will provide solutions to many currently intractable problems. In recent years there has been
a marked resurgence of interest in biotelemetry as newer equipment has become available
and novel research possibilities have been created. The development of faster and cheaper
microprocessors, coupled with the development of sophisticated software, means that
complex algorithms can easily be incorporated into new tracking systems. New batteries,
and smaller, more powerful and more efficient transmitters, have overcome many of the
earlier problems of longevity and reliability. Data can now be recorded from a number of
animals over long periods and many different kinds of environmental and physiological
information can be obtained simultaneously. Furthermore, the continued refinement of
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surgical procedures and the development of new and safe anaesthetics have permitted an
increase in the size and diversity of fish species that can now be successfully tagged.

This section sets out to identify the areas of research that are likely to benefit from
the application of electronic tags, specify some relevant research objectives and identify the
technical developments that are needed to realise them.

5.7.1.1 Migration and distribution

Because most conventional sources of data (surveys and simple tagging experiments)
are biased by the distribution of fishing effort, good descriptions of migration and
distribution are lacking for many commercially exploited species of fish in the open sea.
This lack applies as much to demersal species, such as cod, in shelf seas, as it does to far-
ranging diadromous species, such as salmon and eels, or other ocean migrants, such as tuna.
Much less is generally known, though, about distribution and migration in the open ocean,
and for many large pelagic species it is often not possible to provide a description of
geographical distribution for all stages of the life history. This type of information is,
however, essential for effective fisheries management and will be increasingly required as a
result of the UN Agreement on Highly Migratory Species and Straddling Stocks and other
initiatives. Knowledge is also required to understand ecological processes and how different
species and size-classes of fish interact with one another. Similar arguments apply to
vertical migration, which is a major feature of fish behaviour in most marine environments,
and which appears to serve a number of different ecological functions.

Important objectives in this area of research include: describing migratory pathways
and seasonal changes in vertical and horizontal distribution; identifying guidance
mechanisms; and describing and understanding the functions of vertical migration. Major
technical challenges are posed by determining geographical location, identifying the water
mass (e.g. by temperature and salinity) in which fish are swimming, and recording
orientation and swimming speed. Physiological measures of condition and reproductive
state are also highly desirable.

5.7.1.2 Methods of estimating fish abundance

Fish behaviour strongly influences estimates of population abundance derived from
static fishing gear, survey trawls, and acoustic instruments (echo sounders & sonars). It may
bias results in a variety of ways, which may or may not be systematic. Fish that encounter
the gear may avoid capture by reacting to individual parts of the gear or to the noise it
produces. These reactions may vary with the size of the fish and ambient environmental
conditions. ‘Natural’ behaviour, which governs horizontal and vertical distribution,
determines the extent to which sampling gear encounters fish at all. For acoustic surveys
changes in swimbladder volume or tilt angle, which occur naturally during vertical
migration, or as the fish reacts to the noise of an approaching survey vessel, can cause major
variations in target strength (TS) measurements and any estimates of abundance derived
from them.

Research on ‘natural’ behaviour needs to focus primarily on the vertical and
horizontal movements that determine spatial distribution and thus availability and
accessibility (Anon, 1960; Harden Jones, 1974) to sampling gear. The rates and extents of
such movements vary with both biological and environmental factors (e.g. light intensity,
temperature and tidal currents) and the effects of these factors need to be determined. It is
similarly important to determine how fish regulate buoyancy in relation to depth and how
they compensate for negative buoyancy by tilting the body in the vertical plane. Static and
mobile fishing gears work in different ways and studies of vulnerability (Anon, 1960;
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Harden Jones, 1974) accordingly have different objectives for each type of gear. Static gears
work by chance encounter (e.g. gillnets) or by attracting fish or shellfish from a distance
with bait (e.g. pots and longlines) and an odour trail. For gillnets the research objective is to
determine how fish move as they approach the net and how visibility of the net affects their
avoidance reactions. For baited gear the aims are to define the shape and size of the odour
trail in relation to the prevailing currents and the concentration of the olfactory stimulant,
and to determine whether catch per unit effort is a reliable measure of population density.
With towed fishing gear the principal objective is to study avoidance reactions and
determine how capture efficiency differs between sizes and species of fish and varies with
physical factors, such as temperature, light intensity and underwater visibility.

To meet these various objectives measurements are needed of one or more of the
following physical quantities: noise, temperature, light intensity, turbidity, depth, rate of
ascent or descent, tilt angle, swimming speed and reaction distance. In most cases the
measurements must be made at the fish rather than at the research vessel and for some
projects it may also be necessary to measure a physiological parameter, such as heart rate.
Measuring and recording, or telemetering, these variables is difficult at present, particularly
when real-time observations are needed for more than just a few fish at any one time.

5.7.1.3 Species interactions

Electronic tags have the potential to tell us a great deal about how and when fish eat
and how much food they consume. Knowledge of the natural behaviour of free-ranging fish
would provide a major impetus to the study of multispecies interactions and reduce the
current over-reliance on theoretical models. It could also be used directly to correct or tune
the multi-species VPA models used to provide advice for fisheries management. Improved
knowledge of natural behaviour would advance our understanding of a number of important
ecological processes, such as habitat selection (particularly important for small fish) and
partitioning of resources between apparently sympatric species. For most marine species,
habitat changes markedly as individuals grow from one size class to the next, alter their
physiological optima, change their prey and become susceptible to larger predators.
Changes usually occur in three dimensions, not just two. In addition to providing a better
understanding of ecological processes, quantitative estimates of feeding rates in free-ranging
fish would provide an important practical tool for interpreting gut content data collected
during multispecies fisheries surveys. These data are currently difficult to interpret within
the confines of existing knowledge, which is based almost entirely on laboratory studies.

Initially, any investigation of habitat selection and resource partitioning needs good
descriptions of the horizontal and vertical distributions of the fish in question, by size and
species. The second objective is to describe natural feeding behaviour and measure rates of
encounter between predators and prey, rates of predator avoidance and feeding success.
These quantities are needed to estimate costs of predator avoidance in relation to lost feeding
opportunities. Locomotory costs are also important in establishing energy budgets and, in
this area, measurements are needed of burst swimming speeds during predator escape
reactions and cruising speeds during feeding. Direct measurements are also needed of basal
metabolic rates and quantities of food consumed. There are major technical challenges in
developing devices to measure and record these parameters.

5.7.1.4 Growth and reproduction

On-line estimates of growth and reproductive condition could be extremely useful
both in understanding ecological processes and for practical applications, such as sea
ranching and stock enhancement (see Section 5.7.1.5). In this context a thermal history of
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the fish throughout its time at liberty would be of great interest, particularly if temperature
measurements recorded by data storage tags could be correlated with a direct estimate of
growth rate from scales or otoliths. The identification of feeding locations in relation to the
productivity of different water masses would also be highly informative. A measure of
gonad fullness would aid studies of reproduction and a means of identifying specific
spawning events could also be most useful. Tail beat frequency is a good correlate of
spawning in salmonids (e.g. Johnstone et al., 1992), as is the noise made by the fish when
they cut redds in gravel spawning beds. Other species, such as cod and haddock, have a
repertoire of sounds that they produce during spawning (e.g. Nordeide & Kjellsby, 1999).
Biosensors in the blood would allow us to measure and record hormone levels and correlate
them with different patterns of behaviour. This capacity would significantly advance our
understanding of the links between physiology and behaviour. These requirements, which
are to a large degree shared by the other research areas identified in this section, provide a
major challenge for sensor development and miniaturisation.

5.7.1.5 Aquaculture, sea ranching and enhancement

Electronic tags have so far made a relatively limited contribution to aquaculture,
although there is considerable scope to apply the technology to the investigation of a number
of physical and biological factors that control production. The aquaculture industry should
be encouraged to investigate these opportunities. Applications include feeding and energetic
studies, which could serve as a useful precursor to similar studies with fish in the open sea
(see Section 5.7.1.4). Studies of interactions of fish in rearing cages with predators or wild
fish outside the cage would also be useful, as could a cheap identification tag that allowed
escapees to be quickly and readily identified. Fish health is probably the highest priority in
the fish farming industry and techniques for long-term monitoring of fish condition have
considerable potential, particularly if data could be recovered regularly without removing the
tag from the fish. Stress resulting from handling is obviously an important factor for fish
kept at high densities and biosensors linked to data logging tags have considerable potential
in this field, as they do, for example, in relation to studies of growth, migration and
reproduction of free-ranging fish (see sections 5.7.1.1 and 5.7.1.4). Stress also arises in
relation to slaughter and transfer between salt and freshwater.

Ranching and enhancement studies are concerned with where hatchery fish go in the
wild and how they interact with wild stocks. Objectives are thus very similar to studies of
migration and distribution in wild stocks and involve descriptions of local and migratory
movements, geographical location, swimming behaviour and the measurement of
appropriate environmental factors, as discussed in previous sub-sections.

5.7.1.6 Anthropogenic effects

Existing research has already identified the benefits of using electronic tags to study
the impact of man-made structures on the distribution and abundance of fish. The
construction of dams and other barrages in rivers has had a major impact on fish populations
through disruption of migration and reproduction and electronic tags have been widely used
to test the effects of mitigating measures, such as fish passes. They have been used less
frequently to assess the impact of proposed structures before construction. This is an
important area for the future, however, particularly in relation to the impending development
of hydropower in big tropical rivers (e.g. in Southeast Asia), where large proportions of the
human population depend on fisheries, and where most of the fish are highly migratory.
There are similar opportunities in the sea in relation to policy decisions on the future of
decommissioned oil rigs and studies to assess the uptake of pollutants by fish attracted to
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feed in the vicinity of drilling platforms (e.g. Soldal et al., 1998). Electronic tags offer an
ideal way of studying local movements of fish in the neighbourhood of these and other
structures (e.g. effluent discharge pipes) and also the migrations and seasonal movements
that are capable of dispersing disease and pollutants over wide areas.

5.7.2 Biological improvements

Engineering will provide many of the technical advances needed to improve tag
performance and reliability and this topic is discussed in section 5.7.3. Technology will not
realise its full potential, however, unless biologists also make significant improvements to
the way in which they capture and handle fish and attach tags. Some of these issues are
addressed here; others are dealt with in Chapter 7.

5.7.2.1 Capture and handling fish

Reviews of the effects of capture, handling and tagging inevitably focus on the
negative aspects of these procedures and tend to obscure the fact that, in many cases, it is
already possible to obtain fish in excellent condition (see Appendix 1 of Chapter 7). Often,
however, the relevant expertise is passed on by word of mouth and much useful knowledge
never finds its way into the ‘grey literature’, let alone refereed scientific publications. There
is a general need, therefore, for improved documentation of the various capture procedures
and a codification of general principles. This clearly needs to be done in respect of each type
of fishing gear (lines, trawls, traps etc.) and capture method. The incompleteness of existing
information identified in section 5.3, however, means that there is also a need for systematic
investigations to determine the effects of capture and handling on the condition and survival
of different species of fish at various stages of their life history. While there is a general
need for more research on the effects of these processes on commonly tagged fish in
temperate waters, there is an even greater need for research on tropical species. Special
attention also needs to be paid to methods of handling endangered species and delicate
species or delicate life history stages.

During research, careful records must be kept of the size and condition of the fish, as
well as environmental conditions, and any factors relevant to the specific method of capture.
For trawls these factors include speed of towing, haul duration, and depth. The size and
composition of fish catch is also important, as is the quantity and type of by-catch. By-catch
can significantly increase mortality, especially in bottom trawls, where sharp objects such as
shells and spiny fish and invertebrates can do a great deal of damage. Qualitative
observations suggest that it is probably possible to define levels of debris in trawl catches
above which it is not possible to use fish for tagging at all. Other, comparable constraints
may apply in the case of line- and trap-caught fish.

Laboratory studies offer one way of recording mortalities and observing the condition
of fish after capture, which is generally regarded as a more serious cause of damage than
tagging. The fish must, however, be returned to the laboratory from sea and this process
may exacerbate any problems caused during capture. It may therefore be better to make the
observations at sea using cages to monitor condition and survival, as described in section
5.3.4(b). Further work of this type should be encouraged, even though it is not easy to do for
logistic reasons. A third option is to obtain information from electronic tags, which may
reveal how long fish exhibit atypical behaviour after tagging and release before resuming
natural activities such as migration and spawning. Acoustic tags (Candy et al., 1996; Candy
& Quinn, 1999; Pepperell & Davis, 1999) and data storage tags (Wada & Ueno, 1999;
Walker et al., 2000) can both be used for this purpose. Confirmation of spawning can also
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be obtained by recovery of the carcass of the tagged fish, which can also reveal the state of
any wounds associated with tag attachment. Pilot projects with dummy tags are
recommended before starting DST tagging programmes as they can clarify the effects of
capture, handling and tagging on the fish and indicate the expected recovery rates of the
electronic tags.

While systematic studies of the effects of conventional methods of capture are
essential, encouragement should also be given to the adoption of new, less traumatic
approaches where the fish are tagged underwater. Baited tags, which have been used on a
range of species (see Section 5.4.3.1), allow the fish to ingest a tag voluntarily without being
caught. This could clearly be advantageous in many situations, although there is limited
control over the size, or even species, of fish that is caught and an individual fish may ingest
more than one tag. Tagging underwater, which has had only limited application to date (e.g.
Gitschlag, 1986), may eventually become a routine way of avoiding the problems of
catching fish with closed swimbladders. The cost and logistics of deploying teams of scuba
divers makes it impractical at present. One commercial company is, however, developing an
automated device capable of withstanding depths of 1000 m and able to automatically tag
large numbers of fish of different types and sizes. If successful, such a device would
revolutionise the whole process of tagging fish at sea.

5.7.2.2 Design and attachment of external tags

Weight, which is an important consideration in the design of electronic tags, is
discussed more fully in Chapter 7. The main design aim is to minimise the ratio of tag
weight to fish weight by reducing the weight of the tag in water. In many cases it is possible
to increase the volume so that the tag becomes neutrally buoyant and imposes no extra
weight on the fish. Slight positive buoyancy may actually be advantageous, provided the
increase in tag volume does not result in excessive drag.

For external tags, drag, which is a function of shape, is generally more important than
weight and should be minimised wherever possible. Although some progress has recently
been made with hydrodynamic designs of pop-up tags for use with bluefin tuna (Block et al.
1998b; Lutcavage 1999), there have been very few similar studies with other externally
attached tags. Systematic studies are therefore urgently needed to devise the most
appropriate hydrodynamic shape for the tag and, perhaps more importantly, the best position
of attachment on the fish. Sensor design and attachment must be included as an integral part
of this programme, which requires assistance from hydrodynamicists and access to flumes
for work with swimming fish. Some idea of the improvements that can be expected from a
programme of this type can be gained from the work done with penguins (e.g. Wilson &
Culik, 1992; Culik et al., 1994; Bannasch et al., 1994) and turtles (Watson & Granger, 1998)
(see also Section 5.4.2.1). Significant advances have been made with these groups by
matching the shape of the tag to the morphology of the animal and this approach should be
adopted with fish. One possibility worth considering would be to design a blister shaped tag
that would be equally streamlined in all directions and could be used with flatfish.

Fish with external tags may be more prone to predation than untagged fish and the
shape and colour of the tag may influence the risk of predation. Some species of fish use
sexually selected traits (for example coloured or swollen body parts) as signals during
mating rituals, which could - theoretically - be confused by the presence of an external tag.
Both subjects should be studied and tag designs modified in the light of findings.

Tag loss is a common problem with electronic tags and there is a clear need to
develop more permanent methods of tag attachment, particularly for DSTs, which potentially
have a life of ten years or more. The development needs to be done in conjunction with the
hydrodynamic investigations identified above and with full consideration of welfare
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implications. The problem of tag loss is unlikely to be solved completely, however, and an
alternative solution may be useful in tracking studies where the fish may not move for long
periods. Stationary tag signals are difficult to interpret in this situation and it would be
useful to be able to distinguish between a tag that is still attached to a live fish and a tag that
has fallen off, or is attached to a dead fish. A tag that could differentiate between these
situations – with an internal accelerometer or other sensor – would be a useful development.

5.7.2.3 Swimming performance and behaviour

In addition to developing new attachment procedures there is a need to develop
challenge tests to evaluate how tags modify the normal behaviour and responsiveness of the
fish. To date the most commonly used challenge test is the comparative swimming trial.
This has been used successfully to evaluate various attachment techniques, using both
critical swimming speed and fatigue trials (e.g. Moore et al., 1990a; Anderson et al., 1997;
Colavecchia et al., 1998; Beddow & McKinley 1998, 1999; Peake et al. 1997a). There is
clearly scope for significant development in this area and one approach is to use
physiological sensors to record the recovery of fish from tagging (Anderson et al., 1998) as a
step in developing standard procedures for commonly tagged species. Tags that measure
muscle activity (EMG) and heart rate are commercially available and are already suitable for
this purpose. Existing techniques are probably not suitable for long-term measurements in
the open sea, however, without significant further development and one of the main
challenges for the future will be to devise ways of recording ‘natural’ behaviour and
physiology without resorting to invasive surgery.

5.7.2.4 Representativeness

As discussed in more detail in Chapter 7, concern is growing about the welfare of
experimental animals. Experimental procedures are strictly regulated and authorities in most
countries are increasingly scrutinising the number of experimental animals used in individual
studies. In this context, electronic tags – particularly data storage tags - have the great
advantage over simple identity tags that much more information can be gained from fewer
fish over much longer periods. Concomitantly, it becomes more important to demonstrate
that results from a relatively small number of tags are representative of the whole population.
One way of doing this is to use large numbers of identity tags (see Chapter 4) in parallel with
electronic tags. Another very effective approach is to predict the behaviour of the population
from the electronic tag observations and test the prediction by independent means. This
method has been used to demonstrate the importance of selective tidal stream transport in the
life cycle of plaice (Pleuronectes platessa) in the Southern North Sea and eastern English
Channel. The phenomenon was first demonstrated with a small number of acoustically
tagged fish; its importance to the population at large was confirmed by a series of
comparative fishing experiments with large midwater trawls (Harden Jones et al., 1979;
Arnold & Metcalfe, 1996).

5.7.3 Engineering developments

Major advances in the research areas identified in section 5.7.1 will depend to a large
extent on improvements in the design and performance of electronic tags. The most
important of these are telemetry tags that transmit more data over longer ranges and data
storage tags that can record more information and store it for longer periods. Individual
coding and remote, fishery-independent data retrieval are also becoming increasingly
important. Improvements in telemetry may come from smaller, more powerful tags. More
sophisticated retrieval of data from noisy backgrounds may, however, offer a more effective
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solution by avoiding the need to increase the transmitting power of the tag. A significant
reduction in the cost of tags, particularly data storage tags, would provide a major impetus to
the use electronic tags and would see them used to solve a wider range of fisheries and
ecological problems. Cheapness, however, conflicts with the need for devices that are both
smaller and more sophisticated. Technological factors that will affect the development of
better and cheaper tags are considered in this section.

5.7.3.1 Tag performance

(a) Size

The development of significantly smaller tags is an almost universal requirement,
although small tags currently have some disadvantages, such as reduced life and increased
weight in water. They may also be harder to find when the fish is recaptured. Smaller tags
are, however, needed for use with smaller fish, especially juveniles, and more compact
circuits are required to allow greater sophistication within the same space. Successful
development of smaller tags will depend primarily on the availability of smaller electronic
components, batteries and sensors. At present most microsystems are built from a large
number of components, none of which are tailor-made for the needs of wildlife telemetry.
Integrated circuits may perform more functions than are actually required in the specific tag
application, consuming more current than necessary and reducing battery life. One solution
might be to develop custom-built integrated circuits, although costs would be high because
of the need to manufacture these devices in sufficiently large quantities to justify
development. Another option would be to use custom-built silicon chips for whole tags,
although with continuing advances in microcontroller technology this approach is not likely
to be cost effective. A prime requirement is to use small batteries and to do this it is
necessary to minimise power consumption. Greatest reductions in power consumption are
likely to be achieved by the use of quick response sensors that can be switched on for short
periods only and can be sampled within a few milliseconds of being switched on.

(b) Life and memory size

Telemetry tags often only require a relatively short life measured in days rather than
months. Most biological cycles are seasonal, however. The majority of data storage tags
therefore need to be able to record several items of information for at least a year and store
the data for several years to maximise the chances of capture and tag recovery. The use of
flash memory, with an expected life of 10-20 years, overcomes the need to provide power
for long-term data storage but, as more sensors are included, tags will need progressively
more memory. Certain applications, such as the investigation of spawning site fidelity will
require tags that record data for several years in succession and tags of this capacity will be
needed for many applications with large pelagic species that range extensively through the
oceans. Data management will also be important to ensure that best use is made of the
available memory, either through data compression or intelligent data recording (e.g. by not
recording new data until a sensor reading changes significantly).

(c) Batteries

Tag size and life is currently determined largely by the size of batteries, which will
continue to be a limiting factor for the foreseeable future. Silver oxide cells offer a number
of important advantages, such as the ability to deliver a high peak current (8 mA) for a short
period from a small cell. Lithium cells are unable to do this and have other technical
disadvantages, such as a tendency to passivation, which often leads to premature tag failure.
They do, however, operate over a much wider temperature range (-30° to >100° C) than
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silver oxide cells (-2° to 65° C) and most battery development is now devoted to lithium
cells.

5.7.3.2 Tracking systems

(a) Short-range systems

Fixed arrays of hydrophones are currently used to investigate the movements of fish
or shellfish static in the vicinity fishing gear (e.g. Løkkeborg, 1998; Løkkeborg & Fernö,
1999). Similar techniques have been used to study the effects of dams and barrages on the
passage of fish in rivers (e.g. Russell et al., 1998). The simple systems used to date have
depended on three or four hydrophones anchored several hundred metres apart in a triangular
pattern with a maximum effective range of about 1000m. Early systems depended on
electric cables to bring data ashore. More recently data has been sent by radio telemetry to
the shore or to a research vessel and this development has allowed these systems to be used
in the open sea. Fish are tagged with acoustic transmitters and their position estimated from
the time of arrival of the sound pulses at each of the hydrophones. The depth of the fish is
measured with a pressure sensitive telemetry tag. Traditionally each tag has worked on a
different frequency and up to 10 tagged fish have been kept under surveillance at any one
time. Recently new systems have become available that use binary codes – pseudo random
(PN) numbers – to code the tag signals (Cote et al., 1998; Voegeli et al., 1998). This
development allows the arrival time of the signal to be measured much more accurately and
also enhances the signal to noise ratio. The resulting coding gain provides increased range,
allows the tags to operate in noisier environments and can track up to 212 fish
simultaneously on a single acoustic frequency. There is no restriction on the number of
hydrophones and the operating area can be readily increased to match the type of
investigation to be undertaken. These developments are to be encouraged because they will
also open up the possibility of investigating predator-prey behaviour in the open sea in a
cost-effective way.

(b) Long-range systems

Fixed arrays of acoustic listening stations on the seabed have been used with great
success in the North Atlantic to monitor ocean currents by recording the tracks of neutrally
buoyant SOFAR floats. A similar system would be highly desirable for use with highly
migratory oceanic fish. Unfortunately, the SOFAR system operates at low frequencies and
the transmitters are far too large to be used on any fish. The receivers of the RAFOS system,
which operates on the same principle, but in reverse with fixed transmitters and mobile
receivers, are also too large for use with fish.

Fisheries research vessels undertaking regular trawl surveys or acoustic surveys
might be used as mobile listening stations. Sonars could be used to search for acoustically
tagged fish and it might be possible to recover stored data using a sonar or hydrophone. The
concept could be tested with single frequency tags designed merely to record the presence or
absence of fish. Even with this simple configuration, however, it would be necessary to
released very large numbers of tagged fish, given the depth of the sea, the power of existing
acoustic tags, the range of existing sonars and the limited width of search swath that could be
achieved.
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5.7.3.3 Physical sensors

(a) Temperature

Thermistor technology is well developed and small beads are readily available.
Calibration and stability are not a problem. The main difficulty is to avoid spuriously high
readings when the tag is heated by sunlight and the thermistor is mounted inside the tag. The
problem is probably soluble using a miniature thermistor bead coupled as closely as possible
to the water.

(b) Pressure

Small electronic sensors are available that are capable of measuring pressure at
depths in excess of 3000 m. They are suitable for use with most adult fish but smaller
devices are needed for use with juveniles. Lower prices would also be desirable.
Technically there are a number of problems, including zero drift, undesirable variation in
sensitivity between individual devices and variation in output (offset voltage) with
temperature, all of which create problems for accurate calibration.

(c) Light

A number of data storage tags incorporate sensors that measure ambient light
intensity and are used to estimate geographical position. Some tags use large area (5-10
mm²) silicon diodes, either singly or joined together; others use a point source diode and a
separate collector with a light pipe to focus the light on the diode. These devices are fairly
sensitive and can detect light down to about 300 m in clear oceanic water. They can
satisfactorily measure light levels around dawn and dusk when the fish is swimming near the
surface. They are not sensitive enough, however, for fish that dive to greater depths at dawn
and dusk, or swim consistently well below the surface. Greater sensitivity is required for
these applications and switched mode operation is desirable to avoid excessive power
consumption. This requires the development of high input-impedance amplifiers with fast
settling times to cope with the behaviour of the sensor at low light levels. The frequency
response of existing semiconductor sensors is also not ideal, peaking as it does at
approximately 900 nm. Devices with maximum sensitivity in the range 450-550 nm would
provide greater sensitivity for most marine applications, except turbid coastal waters, whose
peak transmission may be as high as 600 nm.

(d) Salinity

One DST available on the market can measure salinity. This tag, which has been
used to study movements of adult salmonids in the sea (see Section 5.6.2.3), can identify
whether the fish is in fully saline water, has entered an estuary, or has returned to
freshwater. Much greater sensitivity is needed, however, before it will be possible to use
DSTs to identify the type of water in which a fish is swimming in the open ocean from the
relatively small differences in conductivity.

(e) Tilt angle

One commercially available DST can measure tilt angles in the range ±40° from
horizontal with a resolution of <5°, using a mechanical sensor. These tags have been used in
the Barents Sea to investigate the attitude of free-swimming cod in relation to vertical
migration and target strength (TS). Sampling rates are rather low, however, in relation to the
problem and a sampling interval of the order of 1 s would be desirable for this type of
research. It would also be desirable to use an electronic sensor with an increased angular
range and a resolution of <1°. To achieve this resolution in practice and make reliable
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measurements, however, it would be necessary to develop a much better system of tag
attachment and this is a significant challenge for the biologists.

(f) Speed and acceleration

Direct measurement of swimming speed is currently difficult. Most devices (e.g.
turbines, hot films, electromagnetic sensors, Doppler shift instruments) that have been used
are either too large, too vulnerable, too unstable, or consume too much power, to be of
practical use, except with very large fish (e.g. Lowe et al., 1998). An alternative approach
might be to measure speed indirectly through tail-beat frequency, although further research
is needed to fully elucidate the relationship between the two quantities in many species of
fish. Another approach could be to measure acceleration, which, if sufficiently accurate,
might open up the prospect of reconstructing through-water movements of the fish by
inertial navigation techniques. Small low-power accelerometers would, however, be
required and there would probably be difficulties in operating them for sufficiently long
periods to sample the movements of the fish adequately.

(g) Activity

For a number of applications, it may be sufficient to record activity rather than speed
or acceleration. This approach has already been adopted with spawning Atlantic salmon
using an electrolytic tilt sensor inside the fish (Johnstone et al., 1992) or an EMG sensor
(Økland et al., 1997). A similar approach may be useful in other situations.

(h) Compass heading

Miniature magneto-resistive devices are now available that are capable of resolving
the compass heading of a fish to <1°, provided the sensor can be kept within a few degree of
horizontal. Fish rarely swim in this fashion, however, and an accurate electronic compass
requires the output of the compass sensor to be corrected for pitch and roll. Accelerometers
that measure pitch and roll are now available in miniature form and an electronic compass
would seem to be a realistic development goal in the near future.

(i) Magnetic field sensors

Geomagnetic sensors could be useful in helping to determine the geographical
position of oceanic fish that migrate large distances to feed and spawn, particularly if
combined with light-based or other methods of geolocation. Such devices might be less
useful in shelf seas, where fish generally cover shorter distances during migration. Small
low-power devices capable of measuring the total intensity of the local magnetic field of the
earth would be appropriate, if they existed, and magneto-optical devices might be able to
provide a solution. An alternative approach would be to use a sensor capable of measuring
magnetic dip, for which suitable magneto-resistive devices already exist. As with an
electronic compass sensor, however, measurement will be complicated by the need either to
provide a stable platform or to compensate for movements of the fish in all three dimensions.

(j) Sound

Sound recordings require a large amount of memory. A typical CD of classical
music, for example, can use 650 Mbytes. Simple calculations show that even with a limited
bandwidth (e.g. 10-40 Hz) and 4-bit analogue to digital (A-D) conversion, a miniature
recorder is impractical for the present, except possibly for use with very large pelagic species
of fish, or sea mammals.
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5.7.3.4 Physiological sensors

Surprisingly little physiological research has yet progressed to the stage where it is
possible to envisage worthwhile programmes with free-ranging fish in the open sea. In most
cases, even with relatively simple subjects (e.g. the relationship between swimming speed
and tail-beat frequency) a substantial amount of laboratory research is still an essential pre-
requisite. There are a few areas, however, where some progress could be made fairly soon.
The most obvious of these is feeding, where the ability to record feeding patterns and rates
of food intake in the sea would significantly advance our knowledge of predator-prey
relationships and where some work has already been attempted. Cardiac output and EMG
are others.

(a) Mechanical feeding sensors

A simple design for a mechanical jaw angle sensor for use with sharks was proposed
in the late 1970s but apparently not used. The device consisted of two rods sutured to the
upper and lower jaw and connected, respectively, to the case and rotor of a miniature one-
turn trimpot (Nelson, 1976, 1978). More recently, progress has been made in Denmark with
the development of a mechanical probe to detect food intake in free-swimming cod
(Lundgren, pers. comm.). The probe consisted of a piezoelectric film encapsulated in a
sheath of silicon rubber, which was surgically implanted and attached to the wall of the
oesophagus. A device of this type will provide information about when and where fish eat
and the frequency of ingestion. Coupled with a strain gauge the device might also provide
an estimate of the size of individual food organisms. Further development work is required
in this area. An alternative approach might be to measure changes in pressure in the buccal
cavity with a differential pressure sensor. This technique would require only minimal
surgery and might therefore be more appropriate for use with free-ranging fish. Patterns of
buccal pressure will clearly vary, however, with the mode of food ingestion and not much is
yet known about this subject except for fish that feed by suction.

(b) Physiological sensors

Mechanical sensors may not offer the best long-term solution to recording feeding
events and a radically different approach might be to measure one or more of a variety of
physiological parameters that should change predictably following feeding. Stomach, or
visceral, temperature is one possibility, especially in warm-blooded fish. Some encouraging
advances have recently been reported with Southern Bluefin Tuna (Gunn et al., 1994; Gunn
et al., 2001) and there may be scope to pursue the idea with other species, including possibly
some poikilotherms. Heart rate, blood flow, gut pH, bile colour and blood chemistry are
other options; they would also be relevant to studies of bioenergetics, stress and the reactions
of fish to changes in the surrounding environment.

Physiological sensors will increasingly be needed to measure the responses of fish to
environmental changes induced by anthropogenic activities, as well as performance under
natural conditions. Existing techniques, such as EMG (e.g. Beddow & McKinley, 1998,
1999; Dewar et al., 1999) and heart rate monitors, can already be used in these areas,
although there are limitations to the usefulness of both. EMG can be used to measure
metabolic expenditure when swimming behaviour dominates but not when the fish is resting
during recovery from a stressful event. Heart rate measurements, which can be used during
both types of event, do not give a true measure of metabolic activity because of changes in
stroke volume, which occur in many species. A sensor that could record both heart rate and
stroke volume and provide a measure of cardiac output would be a big step forward.

In addition to sensors to measure the physiological state of the fish, there is a
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continuing need to for more sensors to monitor the surrounding environment. Depth,
temperature and conductivity sensors have all been incorporated in transmitting or recording
tags but information is now needed on the chemical environment as well (Brodeur et al.,
1999). Sensors are required to measure quantities such as pH, chlorine and ammonia and
these factors must be monitored at the same time as the physical measurements. There is
therefore a continuing drive to develop a range of smaller, more accurate devices that can be
assembled in small multi-function tags. A variety of devices exist to measure these
quantities, including electromagnetic sensors, thin-film electrodes and biosensors. But most
have so far only been used under controlled conditions in the laboratory and substantial
research programmes are required to transfer the technology for use with fish that will be
allowed to range freely in the wild. Animal welfare considerations will be extremely
important in this context (see Chapter 7).

5.7.3.5 Remote data retrieval

Remote data retrieval is already possible in certain situations. In freshwater, for
example, signals from radio tags can be detected by mobile receivers in aircraft or by fixed
detectors on the riverbank. Fixed listening stations can in return relay information to the
laboratory by radio or telephone. A similar approach can be adopted with acoustic tags if the
fish are within a short distance of a hydrophone on a moored or drifting buoy, which
converts the acoustic signals into radio signals before transmission.

(a) Remote radio telemetry

Satellite data recovery is currently possible with pop-up tags that detach from the fish
at pre-programmed times and float to the sea surface (see Sections 5.4.2.3 and 5.6.2).
Second generation pop-up tags that are capable of measuring several physical quantities and
have substantial data storage capacity, have recently become available and are already
producing valuable new data (e.g. Block et al., 2001a, b; Marcinek et al., 2001). Pop-up
satellite archival tags (PSAT) are currently available from two US manufacturers,
Microwave Telemetry and Wildlife Computers, based in Columbia, Maryland and Redmond,
Washington, respectively.

The size of satellite tags is unlikely to decrease much in the short-term, however, and
pop-up tags are unlikely to be suitable for use with the small to medium sized fish found in
European waters until use can be made of cellular phone systems. Rapid advances are
currently underway in this field and several worldwide systems are under development, each
of which will employ 60-80 satellites. A number of problems need to be solved before the
prospect becomes a reality, however. These include miniaturising the phone and the pop-up
system and providing enough power to transmit to the satellite against a background of
increasing radio noise, especially in heavily populated areas. The service provider will have
to agree to this use of the network. There may also be problems of data corruption when
information is transferred between satellites and lack of cover over the open ocean at some
times. Developing a miniature pop-up system is likely to be difficult, as is provision of
sufficient battery power. Phone miniaturisation may not be a problem if manufacturers
develop a single chip for the purpose in response to the very high demand for cellular
phones.

(b) Remote acoustic telemetry

Recovery of data by an acoustic link demands a lot of power, is slow and is limited to
short range. It is also susceptible to multi-path reflections, which can corrupt the data.
Acoustic data recovery is thus best suited to situations where fish regularly and reliably
return to a known position or remain within the vicinity of a sonobuoy for a sufficiently long
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period (Klimley et al., 1998; Klimley & Holloway, 1999; Voegeli et al., 2001).
Communication history acoustic transponding tags (CHAT tags, see Section 5.2.5) tags are
beginning to show interesting results (Klimley et al., 1998). Recovery of large amounts of
data from data storage tags may be possible via sonobuoys or static listening stations (Fig.
5.7.1), if fish can be induced to stay close to the hydrophone for as long as it takes to
download the data. Alternatively, it may be possible to recover the data in limited (say
100k) blocks by sending a command signal to the tag by a low power radio link when the
fish is in the immediate vicinity of the hydrophone.

5.7.4 Costs of production and sustaining development

The wildlife telemetry market is small compared to the mobile telephone market, for
example, and has not benefited from mass production. High prices of existing electronic
tags are preventing realisation of the full potential of the technology and ways need to be
found of reducing costs. This may be possible in some areas such as aquaculture, where
mass markets may become feasible. There are proposals, for example, in Scandinavia that
consideration should be given to individually marking all cultivated fish to provide a quality
assurance system for the aquaculture industry, and to facilitate the identification of fish that
escape to the wild. Electronic tags similar to PIT tags would be ideal for this purpose but
would need to be quicker to insert and cost less per tag in order to be a viable and cost
effective possibility. The aquaculture industry could also benefit from the use of electronic
tags to monitor the health and condition of stocks, without the need for handling or otherwise
interfering with the fish. Similar possibilities may also exist in relation to cheap
unsophisticated tags capable of worldwide use for a range of very simple applications. This
approach will, however, not satisfy most of the research objectives defined in section 5.7.1,
for which advanced devices are needed. Thus, whilst mass markets may become possible for
some applications, development costs are likely to remain very high and continued public
funding and pre-market investment will be essential to ensure rapid and sustained
development of new technology.

5.8 RECOMMENDATIONS

Due to the limitations of conventional tagging methods, electronic tags will play an
increasing role in fishery science and management in the next century. In the following
section the requirements and recommendations for maintaining progress in this field are
identified.

1. Large-scale systematic studies are required to describe and understand the migrations
and movements of commercially exploited species of fish. These should include
juvenile stages of the life history as well as adult fish. Particular attention should be
paid to the interaction between behaviour and the physical environment, with special
emphasis on the role of currents as transporting or guiding agents.

2. Reactions of fish to research vessels and survey trawls can seriously bias fishery-
independent estimates of abundance and systematic investigations of these effects
should be encouraged. Similar studies should be made of the ‘natural behaviour’ of
fish beyond the influence of the vessel and should include systematic investigation of
vertical migration and distribution in relation to swimbladder function, depth of
neutral buoyancy, body attitude and acoustic target strength.

3. Investigations of predator-prey interactions should have a high priority. Studies
should include direct measurements of feeding rates of free-ranging fish in the open
sea to provide independent validation of existing inputs to multi-species VPA models,
as well as prey selection.
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4. Studies of the physiology of free-ranging fish should be encouraged in order to
understand how behaviour changes in response to condition and reproductive
development. Direct measurements of growth in relation to temperature and food
availability are highly desirable.

5. The aquaculture industry should be encouraged to investigate the use of electronic
tags to monitor the health and condition of stocks without the need for handling or
other interference.

6. Consideration should be given to mass marking all cultivated fish stocks to provide a
quality assurance system for the aquaculture industry and to facilitate the
identification of fish that escape to the wild. Encouragement should be given to the
development of electronic tags for this purpose.

7. A number of investigations have demonstrated the benefits of using electronic
tracking systems to evaluate the environmental effects of man-made structures such as
barrages, dams and oil rigs. Further application of these methods should be
encouraged.

8. Systematic studies are needed to improve methods of tag attachment (both external
and internal) and to minimise the effects of electronic tags on behaviour and
swimming performance of fish. Underwater tagging is an attractive possibility,
particularly for deep-water species and other species with closed swimbladders.
Shared protocols are needed for standard tags and commonly tagged species.

9. Independent testing should be encouraged to evaluate whether data obtained from
relatively small numbers of fish are representative of whole populations.

10.Technological advances should be aimed at producing smaller tags with longer life,
more memory and increased operating range.

11.Further improvements are needed to systems for tracking or monitoring large numbers
of individually identifiable fish. These should include improved coding systems,
increased detection ranges and better software for processing and interrogating data.

12.Sensors need to be smaller and able to record a wider range of physical and
physiological variables. The important physical variables include tilt angle, compass
bearing, magnetic field strength, magnetic dip, tail beat frequency and swimming
speed or acceleration. The important physiological variables include heart rate and
cardiac output, feeding rate, growth rate, gonad development, and related levels of
enzymes or hormones in the blood.

13.More reliable methods of estimating the geographical position of fish tagged with
data storage tags are needed and their development should have high priority.
Investigations should include both direct (e.g. geomagnetic sensors) and indirect
methods (e.g. sequentially released pop-up satellite tags).

14.The development of better systems of fishery-independent data retrieval should be
encouraged. These should include data transmission via satellites or cellular
telephone systems and fixed and mobile acoustic listening stations.

15.Mass markets may become possible for some applications (e.g. mass marking of
cultured fish) but continued public funding and pre-market investment are essential to
rapid and sustained development of new technology.



82

5.9 REFERENCES
Aitken, J., Webber, D., O’Dor, R. and Voegeli, F. 2000. Acoustic telemetry of integrated differential pressures: calibration

and applications. Pages 21-27 in Moore, A. and Russell, I., Advances in Fish Telemetry. Proceedings of the Third
Conference on Fish Telemetry in Europe, held in Norwich, England, 20-25 June 1999, CEFAS Lowestoft, 264 pp.

Anderson, W.G., McKinley, R.S. and Colavecchia, M. 1997. The use of clove oil as an anesthetic for rainbow trout and its
effects on swimming performance. North American Journal of Fisheries Management, 17: 301-307.

Anderson, W.G., Booth, R., Beddow, T.A., McKinley, R.S., Finstad, B., Økland, F. and Scruton, D. 1998. Remote
monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar L. Pages 233-240 in
Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp. Hydrobiologia 371/372.

Anon. 1960. Proceedings of joint scientific meeting of ICNAF, ICES and FAO on ‘Fishing effort, the effect of fishing on
resources and the selectivity of fishing gear’, Lisbon, 27 May – 3 June 1957. Special Publications of the
International Commission for the North-West Atlantic Fisheries, 1 (2), 1-45.

Anon. 1997. Report of the Study Group on ocean salmon tagging experiments with data logging tags. ICES CM 1997/M:3,
32 pp (mimeo).

Anon 1998a. Laksen i havet. Resultater fra et forskningsprosjekt ved Færøyene. (Salmon in the sea. Results from a research

project at the Faroe Islands. (In Norwegian with English summary). Nordic Council of Ministers, Fisheries, Tema
Nord 1998: 520, 63 pp.

Anon. 1998b. Report of the Study Group on ocean salmon tagging experiments with data logging tags. ICES CM 1998/
G:17, 34 pp (mimeo).

Aoyama, J., Hissman, K., Yoshinaga, T., Sasai, S., Uto, T. and Ueda, H. 1999. Swimming depth of migrating silver eels
Anguilla japonica released at seamounts of the West Mariana Ridge, their estimated spawning sites. Marine
Ecology Progress Series, 186: 265-269.

Armstrong, J.D. and Baldwin, R.J. 1990. A method for testing retention of transmitters swallowed by deep-sea fish.
Journal of Fish Biology, 36: 273-274.

Armstrong, J.D., Priede, I.G. and Smith, K.L. 1991. Temporal change in foraging behaviour of the fish Coryphaenoides
(Nematonurus) yaquinae in the central North Pacific. Marine Ecology Progess Series, 76: 195-199.

Armstrong, J.D., Bagley, P.M. and Priede, I.G. 1992a. Photographic and acoustic tracking observations of the behaviour of
the grenadier Coryphaenoides (Nematonurus) armatus, the eel Synaphobranchus bathybius, and other abyssal
demersal fish in the North Atlantic ocean. Marine Biology, 112: 535-544.

Armstrong, J.D., Johnstone, A.D.F. and Lucas, M.C. 1992b. Retention of intragastric transmitters after voluntary ingestion
by captive cod, Gadus morhua L. Journal of Fish Biology, 40: 135-137.

Armstrong, J.D., Lucas, M.C., Priede, I.G. and de Vera, L. 1989. An acoustic telemetry system for monitoring the heart
rate of pike, Esox lucius L., and other fish in their natural environment. Journal of Experimental Biology, 143: 549-
552.

Arnold, G.P. 1981. Movements of fish in relation to water currents. Pages 55-79, in Animal Migration, Aidley, D. J. (ed.),
Society for Experimental Biology Seminar Series, (13), Cambridge University Press, 264 pp.

Arnold, G.P. and Dewar, H. 2001. Electronic tags in marine fisheries research: a 30-year perspective. Pages 7-64 in
Sibert, J. and Nielsen, J. (eds.), Electronic Tagging and Tracking in Marine Fisheries. Reviews: Methods and
Technologies in Fish Biology and Fisheries, Volume 1, Kluwer Academic Press, Dordrecht, The Netherlands.

Arnold, G.P. and Greer Walker, M. 1992. Vertical movements of cod (Gadus morhua L.) in the open sea and the
hydrostatic function of the swimbladder. ICES Journal of Marine Science, 49: 357-72.

Arnold, G.P. and Holford, B.H. 1978. The physical effects of an acoustic tag on the swimming performance of plaice and
cod. Journal du Conseil. Conseil International pour l’Exploration de la Mer, 38: 189-200.

Arnold, G.P. and Holford, B.H. 1995. A computer simulation model for predicting rates and scales of movement of
demersal fish on the European continental shelf. ICES Journal of Marine Science, 52: 981-990.

Arnold, G.P. and Lundgren, B. (eds.) 2002. Electronic Tags in Fisheries Research and Management, CEFAS Technical
Report (in press).

Arnold, G.P., Greer Walker, M. and Holford, B.H. 1990. Fish behaviour: achievements and potential of high-resolution
sector scanning sonar. Rapports et Procès-verbaux des Réunions. Conseil International pour l’Exploration de la
Mer, 189: 112-122.

Arnold, G.P., Greer Walker, M., Emerson, L.S. and Holford, B.H. 1994. Movements of cod (Gadus morhua L.) in relation
to the tidal streams in the southern North Sea. ICES Journal of Marine Science, 51: 207-232.

Baba, N. and Ukai, T. 1996. Intelligent tag and its recovery system for studying the behavior of free-ranging salmon in the
ocean. Bulletin of the National Research Institute for Aquaculture, Supplement, (2): 29-32.

Bagley, P.M., Smith, A. and Priede, I.G. 1994. Tracking movements of deep demersal fishes in the Porcupine Seabight,
north-east Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom, 74: 473-480.

Bannasch, R., Wilson, R.P. and Culik, B. 1994. Hydrodynamic aspects of design and attachment of a back-mounted device
in penguins. Journal of Experimental Biology, 194: 83-96.



83

Baras, E. 1992. Time and space utilisation modes and strategies in the common barbel, Barbus barbus (L.). Cahiers
d'Ethologie, 12: 125-442.

Baras, E. and Jeandrain, J. 1998. Evaluation of surgery procedures for tagging eel Anguilla anguilla (L.) with biotelemetry
transmitters. Pages 107-111 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in
Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp.
Hydrobiologia, 371/372.

Baras, E. and Westerloppe, L. 1999. Transintestinal expulsion of surgically implanted tags by African catfish
Heterobranchus longifilis of variable size and age. Transactions of the American Fisheries Society, 128: 737-746.

Baras, E., Birtles, C., Westerloppe, L., Thoreau, X., Ovidio, M., Jeandrain, D. and Philippart, J.-C. (in press). A critical
review of surgery techniques for implanting telemetry devices into the body cavity of fish. In Le Maho, Y. (ed.),
Proceedings of the 5th European Conference on Wildlife Telemetry, Strasbourg, France, 26-30 August 1996 (in
press).

Beddow, T.A. and McKinley, R.S. 1998. Effects of thermal environment on electro-myographical signals obtained from
Atlantic salmon (Salmo salar L.) during forced swimming. Pages 225-232 in Lagardère, J.P., Bégout Anras, M.-L.
and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 360 pp. Hydrobiologia 371/372.

Beddow, T.A. and McKinley, R.S. 1999. Importance of electrode positioning in biotelemetry studies estimating muscle
activity in fish. Journal of Fish Biology, 54: 819-831.

Bidgood, B.F. 1980. Field surgical procedure for implantation of radio tags in fish. Fisheries Research Report, Fish and
Wildlife Division (Alberta) 20: 1-10.

Bjordal, Å. and Johnstone, A.D.F. 1993. Local movements of saithe (Pollachius virens L.) in the vicinity of fish farm
cages. ICES Marine Science Symposia, 196: 143-146.

Blaxter, J.H.S. and Holliday, F.G.T. 1963. The behaviour and physiology of herring and other clupeids. Pp 261-293 in
Russell, F.S. (ed.), Advances in Marine Biology, 1, Academic Press, London and New York.

Block, B.A., Booth, D.T. and Carey, F.G. 1992a. Depth and temperature of the blue marlin, Makaira nigricans, observed
by acoustic telemetry. Marine Biology, 114: 175-183.

Block, B.A., Booth, D. and Carey, F.G. 1992b. Direct measurement of swimming speeds and depth of blue marlin.
Journal of Experimental Biology, 166: 267-284.

Block, B.A., Keen, J.E., Castillo, B., Dewar, H., Freund, E.V., Marcinek, D.J., Brill, R.W. and Farwell, C. 1997.
Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Marine
Biology, 130: 119-132.

Block, B.A., Dewar, H., Williams, T., Prince, E.D., Farwell, C. and Fudge, D. 1998a. Archival tagging of Atlantic bluefin
tuna (Thunnus thynnus thynnus). Marine Technology Society Journal, 32: 37-46.

Block, B.A., Dewar, H., Farwell, C.A. and Prince, E.D. 1998b. A new satellite technology for tracking the movements of
Atlantic bluefin tuna. Proceedings of the National Academy of Sciences USA, 95: 9384-9389.

Block, B.A., Dewar, H., Blackwell, S.B., Williams, T.D., Prince, E.D., Farwell, C.J., Boustany, A., Teo, S.L.H., Seitz, A.,
Walli, A. and Fudge, D. 2001a. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin
tuna. Science, 293: 1310-1314.

Block, B.A., Dewar, H., Blackwell, S.B., Williams, T., Prince, E., Boustany, A.M., Farwell, C., Dau, D.J. and Seitz, A.
2001b. Archival and pop-up satellite tagging of Atlantic bluefin tuna. Pp 65-88 in Sibert, J. and Nielsen, J. (eds.),
Electronic Tagging and Tracking in Marine Fisheries. Reviews: Methods and Technologies in Fish Biology and
Fisheries, Volume 1, Kluwer Academic Press, Dordrecht, The Netherlands.

Bost, C.A., Georges, J.Y., Guinet, C., Cherel, Y., Pütz, K., Charrassin, J.B., Handrich, Y., Zorn, T., Lage, J. and Le Maho,
Y. 1997. Foraging habitat and food intake of satellite-tracked king penguins during the austral summer at Crozet
Archipelago. Marine Ecology Progress Series, 150: 21-33.

Boyan, S. 1998. Giant bluefins: old questions, new answers. Salt Water Sportsman, 59: 82-104.

Bradbury, C., Green, J.M. and Bruce-Lockhart, M. 1995. Home ranges of female cunner, Tautogolabrus adspersus
(Labridae), as determined by ultrasonic telemetry. Canadian Journal of Zoology, 73: 1268-1279.

Brännäs, E. and Alanärä, A. 1993. Monitoring the feeding activity of individual fish with a demand feeding system.
Journal of Fish Biology, 42: 209-215.

Brawn, V.M. 1982. Behavior of Atlantic salmon (Salmo salar) during suspended migration in an estuary, Sheet Harbour,
Nova Scotia, observed visually and by ultrasonic tracking. Canadian Journal of Fisheries and Aquatic Sciences,
39: 248-256.

Brill, R.W., Holts, D.B., Chang, R.K.C., Sullivan, S., Dewar, H. and Carey, F. G. 1993. Vertical and horizontal
movements of striped marlin (Tetrapturus audax) near the Hawaiian Islands, determined by ultrasonic telemetry,
with simultaneous measurements of oceanic currents. Marine Biology, 117: 567-574.

Brill, R.W., Block, B.A., Boggs, C.H., Bigelow, K.A., Freund, E.V. and Marcinek, D.J. 1999. Horizontal movements and
depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using
ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Marine Biology, 133: 395-408.



84

Brodeur, J.C., Ytrestøyl, T., Finstad, B. and McKinley, R.S. 1999. Increase of heart rate without elevation of cardiac
output in adult Atlantic salmon (Salmo salar) exposed to acid water and aluminium. Canadian Journal of Fisheries
and Aquatic Sciences, 56: 184-190.

Caffrey, J.M., Conneely, J.J. and Connolly, B. 1996. Radio telemetric determination of bream (Abramis brama L.)
movements in Irish canals. Pp 59-65 in Baras, E. and Philippart, J.C. (eds.), Underwater Biotelemetry, University
of Liège, Belgium, 257 pp.

Candy, J.R. and Quinn, T.P 1999. Behavior of adult chinook salmon (Oncorhynchus tshawytscha) in British Columbia
coastal waters determined from ultrasonic telemetry. Canadian Journal of Zoology, 77: 1161-1169.

Candy, J.R., Carter, E.W., Quinn, T.P. and Riddell, B.E. 1996. Adult chinook salmon behavior and survival after catch and
release from purse-seine vessels in Johnstone Strait, British Columbia. North American Journal of Fisheries
Management, 16: 521-529.

Carey, F.G. 1990. Further acoustic telemetry observations of swordfish. Pp 103-122 in Stroud, R. H. (ed.), Proceedings of
the Second International Billfish Symposium, Kailua-Kona, Hawaii, August 1-5, 1988, Part 2, Contributed Papers.

Carey, F.G. and Gibson, Q.H. 1987. Blood flow in the muscle of free-swimming fish. Physiological Zoology, 60: 138-
148.

Carey, F.G. and Lawson, K.D. 1973. Temperature regulation in free-swimming bluefin tuna. Comparative Biochemistry
and Physiology, 44A: 375-392.

Carey, F.G. and Robison, B.H. 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic
telemetry. Fishery Bulletin, U.S., 79: 277-292.

Carey, F.G. and Scharold, J.V. 1990. Movements of blue sharks (Prionace glauca) in depth and course. Marine Biology,
106: 329-342.

Carey, F.G., Teal, J.M. and Kanwisher, J.W. 1981. The visceral temperatures of mackerel sharks (Lamnidae).
Physiological Zoology, 54: 334-344.

Carey, F.G., Kanwisher, J.W. and Stevens, E.D. 1984. Bluefin tuna warm their viscera during digestion. Journal of
Experimental Biology, 109: 1-20.

Carey, F.G., Kanwisher, J.W., Brazier, O., Gabrielson, G., Casey, J.G. and Pratt, H.L. 1982. Temperature and activities of
a white shark, Carcharodon carcharias. Copeia 1982(2): 254-260.

Carlson, B.A., McKibben, J.N. and deGruy, M.V. 1984. Telemetric investigation of vertical migration of Nautilus
belauensis in Palau. Pacific Science, 38: 183-188.

Carmichael, G.J. 1991. Recovery of channel catfish from abdominal surgery. The Progressive Fish-Culturist, 53: 193-
195.

Carr, W.E.S. and Chaney, T.B. 1977. Harness for attachment of an ultrasonic transmitter to the red drum, Sciaenops
ocellata. Fishery Bulletin, U.S., 74: 998-1000.

Cayré, P. 1991. Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) around fish
aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging. Aquatic Living Resources,
4: 1-12.

Chamberlain, A. 1979. Effects of tagging on equilibrium and feeding. Underwater Telemetry Newsletter, 9: 2-3.

Chapman, C.J., Johnstone, A.D.F. and Rice, A.L. 1975. The behaviour and ecology of the Norway lobster, Nephrops
norvegicus (L.). Proceedings of the European Marine Biology Symposium, (9): 54-74.

Chaprales, W., Lutcavage, M., Brill, R., Chase, B. and Skomal, G. 1998. Harpoon method for attaching ultrasonic and
“popup” satellite tags to giant bluefin tuna and large pelagic fishes. Marine Technology Society Journal, 32: 104-
105.

Charrassin, J-B., Kato, A., Handrich, Y., Sato, K., Naito, Y., Ancel, A., Bost, C-A., Gauthier-Clerc, M., Ropert-Coudert, Y.
and Le Maho, Y. 2000. Feeding behaviour of free-ranging penguins determined by oesophageal temperature.
Proceedings of the Royal Society of London B, 268: 151-157.

Clark, D.S. and Green, J.M. 1990. Activity and movement patterns of juvenile cod, Gadus morhua, in Conception Bay,
Newfoundland, as determined by sonic telemetry. Canadian Journal of Zoology, 68: 1434-1442.

Colavecchia, M., Katopodis, C., Goosney, R., Scruton, D.A. and McKinley, R.S. 1998. Measurement of burst swimming
performance in wild Atlantic salmon (Salmo salar L.) using digital telemetry. Regulated Rivers: Research and
Management, 14: 41-51.

Collins, K.J. 1996. Development of an electromagnetic telemetry system for tracking lobsters on an artificial reef. Pp 225-
234 in Baras, E. and Philippart, J.C. (eds.), Underwater Biotelemetry, Proceedings of the First Conference and
Workshop on Fish Telemetry in Europe, University of Liège, Belgium, 257 pp.

Collins, K.J. and Jensen, A.C. 1992. Acoustic tagging of lobsters on the Poole Bay artificial reef. Pp 354-358 in Priede, I.
G. and Swift, S.M. (eds.), Wildlife Telemetry: remote monitoring and tracking of animals, Ellis Horwood, New
York, 708 pp.

Collins, K., Jensen, A. and Smith, P. 1997. Tagging, tracking and telemetry in artificial reef research. In Jensen, A.C.
(ed.), European Artificial Reef Research. Proceedings of the 1st EARRN Conference, Ancona, Italy, March 1996.
Southampton Oceanography Centre, UK, 449 pp.



85

Collins, M.A., Priede, I.G., Addison, S., A. Smith, S. and Bagley, P.M. 1998. Acoustic tracking of the dispersal of organic
mater by scavenging fishes in the deep-sea. Pages 181-186 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux,
G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 360 pp. Hydrobiologia, 371/372.

Collins, K.J., Smith, I.P, Jensen, A.C., Addison, J.T. and Bannister, R.C.A. 2000. Measuring lobster (Homarus gammarus
(L.)) catchability using electromagnetic telemetry. Pp 185-192 in Moore, A. and Russell, I., Advances in Fish
Telemetry. Proceedings of the Third Conference on Fish Telemetry in Europe, held in Norwich, England, 20-25
June 1999, CEFAS Lowestoft, 264 pp.

Cote, D., Scruton, D.A., Niezgoda, G.H., McKinley, R.S., Rowsell, D.F., Lindstrom, R.T., Ollerhead, L.M.N. and Whitt, C.
J. 1998. A coded acoustic telemetry system for high precision monitoring of fish location and movement:
application to the study of nearshore nursery habitat of juvenile Atlantic cod (Gadus morhua). Marine Technology
Society Journal, 32: 54-62.

Croxall, J.P., Everson, I., Kooyman, G.L., Ricketts, C. and Davis, R.W. 1985. Fur seal diving behaviour in relation to
vertical distribution of krill. Journal of Animal Ecology, 54: 1-8.

Culik, B. and Wilson, R.P. 1991. Swimming energetics and performance of instrumented Adélie penguins. Journal of
Experimental Biology, 158: 355-368.

Culik, B.M., Bannasch, R. and Wilson, R.P. 1994. External devices on penguins: how important is shape? Marine
Biology, 118: 353-357.

Dagorn, L., Bach, P. and Josse, E. 2000. Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean,
determined using ultrasonic telemetry. Marine Biology, 136: 361-371.

Dagorn, L., Josse, E. and Bach, P. 2001. Association of yellowfin tuna (Thunnus albacares) with tracking vessels during
ultrasonic telemetry experiments. Fishery Bulletin, U.S., 99: 40-48.

Dalbey, S.R., McMahon, T.E. and Fredenberg, W. 1996. Effect of electrofishing pulse shape and electrofishing-induced
spinal injury on long-term growth and survival of wild rainbow trout. North American Journal of Fisheries
Management, 16: 560-569.

DeAlteris, J.T. and Reifsteck, D.M. 1993. Escapement and survival of fish from the codend of a demersal trawl. ICES
Marine Science Symposia, 196: 128 - 131.

Deary, C., Scruton, D.A., Niezgoda, G.H., McKinley, S., Cote, D., Clarke, K.D., Perry, D., Lindstrom, T. and White, D.
1998. A dynamically switched combined acoustic and radio transmitting (CART) tag: an improved tool for the
study of diadromous fishes. Marine Technology Society Journal, 32: 63-69.

Demers, E., McKinley, R.S., Weatherley, A.H. and McQueen, D.J. 1996. Activity patterns of largemouth and smallmouth
bass determined with electromyogram biotelemetry. Transactions of the American Fisheries Society, 125: 434-439.

DeMetrio, Arnold, G., Cort, J.L., de la Serna, J.M., Yannopoulos, C., Megalofonou, P. and Labini, G.S. 1999. Bluefin tuna
tagging using “pop-ups”: first experiments in the Mediterranean and eastern Atlantic. ICCAT, Collected Volume of
Scientific Papers, XLIX(1): 113-119.

DeMetrio, G., Arnold, G.P., de la Serna, J.M., Yannopoulos, C., Megalofonou, P., Buckley, A.A. and Pappalepore, M.
2000. Further results of tagging Mediterranean bluefin tuna with pop-up satellite-detected tags. ICCAT,
SCRS/00/109, 7 pp (mimeo).

Dewar, H., Deffenbaugh, M., Thurmond, G., Lashkari, K. and Block, B.A. 1999. Development of an acoustic telemetry
tag for monitoring electromyograms in free-swimming fish. Journal of Experimental Biology, 202: 2693-2699.

Dodson, J.J. and Leggett, W.C. 1973. Behavior of adult American shad (Alosa sapidissima) homing to the Connecticut
River from Long Island Sound. Journal of the Fisheries Research Board of Canada, 30: 1847-1860.

Dodson, J.J. and Leggett, W.C. 1974. Role of olfaction and vision in the behavior of American shad (Alosa sapidissima)
homing to the Connecticut River from Long Island Sound. Journal of the Fisheries Research Board of Canada, 31:
1607-1619.

Donnelly, R.E., Caffrey, J. M. and Tierney, D.M. 1998. Movements of a bream (Abramis brama (L.)), rudd x bream
hybrid, tench (Tinca tinca (L.)) and pike (Esox lucius (L.) in an Irish canal habitat. Pages 305-308 in Lagardère, J.
P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 360 pp. Hydrobiologia, 371/372.

Døving, K.B., Westerberg, H. and Johnsen, P.B. 1985. Role of olfaction in the behavioral and neuronal responses of
Atlantic salmon, Salmo salar, to hydrographic stratification. Canadian Journal of Fisheries and Aquatic Sciences,
42: 1658-1667.

Dunbar, R.M. 1972. The performance of a magnetic loop transmitter-receiver system submerged in the sea. The Radio
and Electronic Engineer, 42: 457-463.

Eckert, S.A. and Stewart, B.S. 2001. Telemetry and satellite tracking of whale sharks, Rhincodon typus, in the Sea of
Cortez, Mexico, and the north Pacific Ocean. Environmental Biology of Fishes, 60: 299-308.

Eiler, J.H. 1995. A remote satellite-linked tracking system for studying Pacific salmon with radio telemtry. Transactions
of the American Fisheries Society, 124: 184-193.



86

Engås, A., Soldal, A.V. and Øvredal, J.T. 1991. Avoidance reactions of ultrasonic tagged cod during bottom trawling in
shallow water. ICES C.M. 1991/B:41, 9 pp (mimeo).

Engås, A., Hauglund, E.K. and Øvredal, J.T. 1998. Reactions of cod (Gadus morhua L.) in the pre-vessel zone to an
approaching trawler under different light conditions. Pages 199-206 in Lagardère, J.P., Bégout Anras, M.-L. and
Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 360 pp. Hydrobiologia 371/372.

Filipek, S. 1989. A rapid field technique for transmitter implantation in paddlefish. Pp 388-391 in Amlaner, C.J. Jr. (ed.),
Biotelemetry X, Proceedings of the Tenth International Symposium on Biotelemetry, Fayetteville, Arkansas, USA,
31 July – 5 August 1988.

Foote, K.G. 1980. Effect of fish behaviour on echo energy: the need for measurements of orientation distributions.
Journal du Conseil. Conseil International pour l’Exploration de la Mer, 39: 193-201.

Freire, J. and González-Gurriarán, E. 1998. New approaches to the behavioural ecology of decapod crustaceans using
telemetry and electronic tags. Pages 123-132 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.),
Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp.
Hydrobiologia 371/372.

Fricke, H. and Kaese, R. 1995. Tracking of artificially matured eels (Anguilla anguilla) in the Sargasso Sea and the
problem of the eel’s spawning site. Naturwissenschaften, 82: 32-36.

Gales, R., Williams, C. and Ritz, D. 1990. Foraging behaviour of the little penguin. Eudyptula minor: initial results and
assessment of instrument effect. Journal of Zoology (London), 220: 61-85.

Gitschlag, G.R. 1986. A collapsible trap for underwater fish tagging. Bulletin of Marine Science, 39: 719-722.

Gitschlag, G.R. and Renaud, M.L. 1994. Field experiments on survival rates of caged and released red snapper. North
American Journal of Fisheries Management, 14: 131-136.

Godø, O.R. 1995. Transplantation-tagging-experiments in preliminary studies of migration of cod off Norway. ICES
Journal of Marine Science, 52: 955-962.

Godø, O.R. and Michalsen, K. 1997. The use of data storage tags to study cod natural behaviour and availability to
abundance surveys in the Barents Sea. ICES C.M. 1997/W:18, 23 pp (mimeo).

Godø, O.R. and Michalsen, K. 2000. Migratory behaviour of north-east Arctic cod, studied by use of data storage tags.
Fisheries Research, 48: 127-140.

Goldman, K.J. and Anderson, S.D. 1999. Space utilization and swimming depth of white sharks, Carcharodon carcharias,
at the South Farallon Islands, central California. Environmental Biology of Fishes, 56: 351-364.

González-Gurriarán, E. and Freire, J. 1994. Movement patterns and habitat utilization in the spider crab Maja squinado
(Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. Journal of Experimental Marine Biology and
Ecology, 184: 269-291.

Gotshall, D.W. 1964. Increasing tagged rockfish (Genus Sebastodes) survival by deflating the swim bladder. California
Fish and Game, 50: 253-260.

Gray, R.H. and Haynes, J.M. 1979. Spawning migration of adult chinook salmon (Oncorhynchus tshawytscha) carrying
external and internal radio transmitters. Journal of the Fisheries Research Board of Canada, 36: 1060-1064.

Green, J.M. and Wroblewski, J.S. 2000. Movement patterns of Atlantic cod in Gilbert Bay, Labrador: evidence for bay
residency and spawning site fidelity. Journal of the Marine Biological Association of the United Kingdom, 80:
1077-1085.

Greenstreet, S.P.R. and Morgan, R.I.G. 1989. The effect of ultrasonic tags on the growth rates of Atlantic salmon, Salmo
salar L., parr of varying size just prior to smolting. Journal of Fish Biology, 35: 301-309.

Greer Walker, M., Harden Jones, F.R. and Arnold, G.P. 1978. The movements of plaice (Pleuronectes platessa L.) tracked
in the open sea. Journal du Conseil. Conseil International pour l’Exploration de la Mer, 38: 58-86.

Greer Walker, M., Riley, J.D. and Emerson, L.S. 1980. On the movements of sole (Solea solea) and dogfish (Scyliorhinus
canicula) tracked off the East Anglian coast. Netherlands Journal of Sea Research, 14: 66-77.

Grémillet, D. 1997. Catch per unit effort, foraging efficiency, and parental investment in breeding great cormorants
(Phalacrocorax carbo carbo). ICES Journal of Marine Science, 54: 635-644.

Grémillet, D., Dey, R., Wanless, S., Harriss, M.P. and Regel, J. 1997. Determining food intake by great cormorants and
European shags with electronic balances. Journal of Field Ornithology, 67: 637-648.

Gruber, S.H. and Keyes, R.S. 1981. Keeping sharks for research. Pp 373-402 in Hawkins A.D. (ed.) Aquarium Systems,
Academic Press, London, 452 pp.

Gunn, J. and Young, J. 2000. Environmental determinants of the movement and migration of juvenile southern bluefin
tuna. Pp 123-128 in Hancock, D.A., Smith, D.C., and Koehn, J.D (eds.), Fish Movement and Migration, Australian
Society for Fish Biology Workshop Proceedings, Bendigo, Victoria, September 1999. Australian Society for Fish
Biology, Sydney.

Gunn, J. and Block, B. 2001. Advances in acoustic, archival and satellite tagging of tunas. Pp 167-224 in Block, B.A. and
Stevens, E.D. (eds.), Tuna: Physiology, Ecology, and Evolution, Academic Press, San Diego.



87

Gunn, J., Hartog, J. and Rough, K. 2001. The relationship between food intake and visceral warming in southern bluefin
tuna (Thunnus maccoyii): can we predict from archival tag data how much a tuna has eaten? Pp 109-130 in Sibert,
J. and Nielsen, J. (eds.), Electronic Tagging and Tracking in Marine Fisheries. Reviews: Methods and
Technologies in Fish Biology and Fisheries, Volume 1, Kluwer Academic Press, Dordrecht, The Netherlands.

Gunn, J.S., Stevens, J.D., Davis, T.L.O. and Norman, B.M. 1999. Observations on the short-term movements and
behaviour of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Marine Biology, 135: 553-559.

Gunn, J., Polacheck, T., Davis, T., Sherlock, M. and Betlehem, A. 1994. The development and use of archival tags for
studying the migration, behaviour and physiology of southern bluefin tuna, with an assessment of the potential for
transfer of the technology to groundfish research. ICES C.M. 1994/Mini:2.1, 23 pp (mimeo).

Hallock, R.J., Elwell, R.F. and Fry, D.H. 1970. Migrations of adult king salmon Oncorhynchus tshawytscha in the San
Joaquin delta as demonstrated by the use of sonic tags. California Department of Fish and Game, Fish Bulletin,
(151): 1-92.

Hansen, L.P. and Jacobsen, J.A. 1997. Origin and migration of wild and escaped farmed Atlantic salmon, Salmo salar L.,
tagged and released north of the Faeroe Islands. ICES CM 1997/AA:05, 14 pp (mimeo).

Hansen, L.P. and Jonsson, B. 1988. Salmon ranching experiments in the river Imsa: Effects of dip- netting, transport and
anaesthesia on survival. Aquaculture, 74: 301-305.

Harden Jones, F.R. 1974. Objectives and problems related to research into fish behaviour. Pp 261-275 in Harden Jones, F.
R. (ed.), Sea Fisheries Research, Elek Science, London, 510 pp.

Harden Jones, F.R. and Scholes, P. 1985. Gas secretion and resorption in the swimbladder of the cod Gadus morhua.
Journal of Comparative Physiology B, 155: 319-331.

Harden Jones, F.R. and Arnold, G.P. 1982. Acoustic telemetry and the marine fisheries. Pp 75-93 in Cheeseman, C.L. and
Mitson, R.B. (eds.), Telemetric Studies of Vertebrates. Symposia of the Zoological Society of London, (49),
Academic Press, London, 368 pp.

Harden Jones, F.R., Margetts, A.R., Greer Walker, M. and Arnold, G.P. 1977. The efficiency of the Granton otter trawl
determined by sector scanning sonar and acoustic transponding tags. Rapports et Procès-verbaux des Réunions.
Conseil International pour l’Exploration de la Mer, 170: 45-51.

Harden Jones, F. R., Arnold, G.P., Greer Walker, M. and Scholes, P. 1979. Selective tidal stream transport and the
migration of plaice (Pleuronectes platessa L.) in the southern North Sea. Journal du Conseil. Conseil International
pour l’Exploration de la Mer, 38: 331-337.

Harrell, R.M. and Moline, M.A. 1992. Comparative stress dynamics of brood stock striped bass Morone saxatilis
associated with two capture techniques. Journal of the World Aquaculture Society, 23: 58-63.

Harris, R.B., Fancy, S.G., Douglas, D.C., Garner, G.W., Amstrup, S.C., McCabe, T.R. and Pank, L.F. 1990. Tracking
wildlife by satellite: current systems and performance. US Department of the Interior, Fish and Wildlife Service,
Fish and Wildlife Technical Report, (30): 1-52.

Hart, L.G. and Summerfelt, R.C. 1975. Surgical procedures for implanting ultrasonic transmitters into flathead catfish
(Pylodictis olivaris). Transactions of the American Fisheries Society, 104: 56-59.

Harwood, J. 1992. Assessing the competitive effects of marine mammal predation on commercial fisheries. South African
Journal of Marine Science, 12: 689-693.

Hawkins, A.D., MacLennan, D.N., Urquhart, G.G. and Robb, C. 1974. Tracking cod Gadus morhua L. in a Scottish sea
loch. Journal of Fish Biology, 6: 225-236.

Hays, G.C., Åkesson, S., Godley, B.J., Luschi, P. and Santidrian, P. 2001. The implications of location accuracy for the
interpretation of satellite-tracking data. Animal Behaviour, 61: 1035-1040.

Hayes, M.L. 1983. Active fish capture methods. Pp 123-145 in Nielsen, L.A. and Johnson, D.L. (eds.), Fisheries
Techniques, American Fisheries Society, Bethesda, Maryland, USA, 468 pp.

Heggberget, T.G., Økland, F. and Ugedal, O. 1993. Distribution and migratory behaviour of adult wild and farmed
Atlantic salmon (Salmo salar) during return migration. Aquaculture, 118: 73-83.

Heggberget, T.G., Økland, F. and Ugedal, O. 1996. Prespawning migratory behaviour of wild and farmed Atlantic salmon,
Salmo salar L., in a north Norwegian river. Aquaculture Research, 27: 313-322.

Hernnkind, W.F. 1980. Spiny lobsters: patterns of movement. Pp 349-407 in Cobb, J.S. and Phillips, B.F. (eds.), The
Biology and Management of Lobsters, Volume 1, Academic Press, New York, 463 pp.

Hill, R.D. 1994. Theory of geolocation by light levels. Pp 227-236 in Le Bouef, B.J., and Laws. R.M. (eds.), Elephant
Seals: Population Ecology, Behavior, and Physiology, University of California Press, Berkley, CA.

Hislop, J.R.G. and Hemmings, C.C. 1971. Observations by divers on the survival of tagged and untagged haddock
Melanogrammus aeglefinus (L.) after capture by trawl or Danish seine net. Journal du Conseil. Conseil
International pour l’Exploration de la Mer, 33: 428-437.

Holand, B.A. 1987. Underwater telemetry as a tool in aquaculture research and development. Modeling, Identification and
Control, 8: 11-18.

Holand, B., Mohus, I. and Berntsen, R. 1974. Fish Telemetry Report (5) - Devices and Results 1974 - STF48 A74049,
SINTEF, N-7034, Trondheim, Norway, 1-89.



88

Holland, K.N. and Sibert, J.R. 1994. Physiological thermoregulation in bigeye tuna, Thunnus obesus. Environmental
Biology of Fishes, 40: 319-327.

Holland, K., Brill, R. and Chang, R.K.C. 1990a. Horizontal and vertical movements of Pacific blue marlin captured and
released using sportfishing gear. Fishery Bulletin, U.S., 88: 397-402.

Holland, K.N., Brill, R.W. and Chang, R.K.C. 1990b. Horizontal and vertical movements of yellowfin and bigeye tuna
associated with fish aggregating devices. Fishery Bulletin, U.S., 88: 493-507.

Holland, K.N., Peterson, J.D., Lowe, C.G. and Wetherbee, B.M. 1993. Movements, distribution and growth rates of the
white goatfish Mulloides flavolineatus in a fisheries conservation zone. Bulletin of Marine Science, 52: 982-992.

Holland, K., Brill, R., Ferguson, S., Chang, R. and Yost, R. 1985. A small vessel technique for tracking pelagic fish.
Marine Fisheries Review, 47: 26-32.

Holland, K.N., Brill, R.W., Chang, R.K.C., Sibert, J.R. and Fournier, D.A. 1992. Physiological and behavioural
thermoregulation in bigeye tuna (Thunnus obesus). Nature, 358: 410-412.

Holm, M., Holst, J.C. and Hansen, L.P. 1998. Spatial and temporal distribution of Atlantic salmon post-smolts in the
Norwegian Sea and adjacent areas - origin of fish, age structure and relation to hydrographical conditions in the sea.
ICES CM 1998/N:15, 8 pp (mimeo).

Holm, M., Huse, I., Waatevik, E., Døving, K.B. and Aure, J. 1982. Behaviour of Atlantic salmon smolts during seaward
migration. I: Preliminary report on ultrasonic tracking in a Norwegian fjord system. ICES, C.M. 1982/M:7, 17 pp
(mimeo).

Holst, J.C. and McDonald, A. 2000. FISH-LIFT: a device for sampling live fish with trawls. Fisheries Research, 48: 87-
91.

Holst, J.C., Nilsen, F., Hodneland, K. and Nylund, A. 1993. Observations of the biology and parasites of post-smolt
Atlantic salmon, Salmo salar, from the Norwegian Sea. Journal of Fish Biology, 42: 962-966.

Holst, J.C., Shelton, R., Holm, M. and Hansen, L.P. 2000. Distribution and possible migration routes of postsmolt Atlantic
salmon in the north-east Atlantic. Pp 65-74 in Mills, D. (ed.), The Ocean Life of Atlantic Salmon, Fishing News
Books, Blackwell Science, Oxford, 228 pp.

Hubert, W.A. 1983. Passive capture techniques. Pp 95-122 in Fisheries Techniques, Nielsen, L.A. and Johnson, D.L.
(eds.), American Fisheries Society, Bethesda, Maryland, USA, 468 pp.

Hunter, E., Metcalfe, J.D., Reynolds, J.D. and Arnold, G.P. 2001. Subdivision of the North Sea plaice population:
evidence from electronic tags. ICES, CM 2001/O:08, 12 pp (mimeo).

Hvidsten, N.A., Johnsen, B.O. and Levings, C.D. 1995. Vandring og ernæring hos laksesmolt i Trondheimsfjorden og på
Frohavet. NINA Oppdragsmelding, (332), 1-17, (in Norwegian with English abstract).

Inagake, D., Yamada, H., Segawa, K., Okazaki, M., Nitta, A. and Itoh, T. 2001. Migration of young bluefin tuna, Thunnus
orientalis Temminck et Schlegel, through archival tagging experiments and its relation with oceanographic
conditions in the western North Pacific. Bulletin of the National Research Institute of Far Seas Fisheries, 38: 53-
81.

Ishida, Y., Yano, A., Ban, M. and Ogura, M. 1998. Vertical movement of chum salmon, Oncorhynchus keta, in the
western North Pacific Ocean as determined by a depth-recording archival tag. National Research Institute of Far
Seas Fisheries, Salmon Report Series, 45, 199-211.

Jacobsen, J.A., Thomsen, B. and Isaksen, B. 1992. Survival of saithe (Pollachius virens L.) escaping through trawl
meshes. ICES, C.M. 1992/B:29, 10 pp (mimeo).

Jákupsstovu, S.H.Í. 1988. Exploitation and migration of salmon in Faroese waters. Pp 458-482 in Mills, D. and Piggins,
D. (eds.), Atlantic Salmon: planning for the future, Croom Helm, London and Sydney, Timber Press, Portland,
Oregon, 587 pp.

Jernakoff, P. 1987. An electromagentic tracking system for use in shallow water. Journal of Experimental Marine Biology
and Ecology, 113: 1-8.

Jernakoff, P. and Phillips, B.F. 1988. Effect of a baited trap on the foraging movements of juvenile western rock lobsters,
Panulirus cygnus George. Australian Journal of Marine and Freshwater Research, 39: 185-192.

Jernakoff, P., Phillips, B.F. and Maller, R.A. 1987. A quantitative study of nocturnal foraging distances of the western
rock lobster Panulirus cygnus George. Journal of Experimental Marine Biology and Ecology, 113: 9-21.

Johansen, K., Franklin, D.L. and Citters, R.L. van. 1966. Aortic blood flow in free-swimming elasmobranchs.
Comparative Biochemistry and Physiology, 19: 151-160.

Johnstone, A.D.F., Lucas, M.C., Boylan, P. and Carter, T.J. 1992. Telemetry of tail-beat frequency of Atlantic salmon
(Salmo salar L.) during spawning. Pp 456-465 in Priede, I.G. and Swift, S.M. (eds.), Wildlife Telemetry: remote
monitoring and tracking of animals, Ellis Horwood, New York, 708 pp.

Jónsson, E. 1994. Scale damage and survival of haddock escaping through cod-end meshes (tank experiment). ICES,
CM.1994/B:16, 13 pp (mimeo).

Josse, E., Bach, P. and Dagorn, L. 1998. Simultaneous observations of tuna movements and their prey by sonic tracking
and acoustic surveys. Pages 61-69 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in
Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp.
Hydrobiologia, 371/372.



89

Jouventin, P. and Weimerskirch, H. 1990. Satellite tracking of wandering albatrosses. Nature, 343: 746-748.

Jouventin, P., Capdeville, D., Cuenot-Chaillet, F. and Boiteau, C. 1994. Exploitation of pelagic resources by a non-flying
seabird: satellite tracking of the king penguin throughout the breeding cycle. Marine Ecology Progress Series, 106:
11-19.

Juell, J-E. and Westerberg, H. 1993. An ultrasonic telemetric system for automatic positioning of individual fish used to
track Atlantic salmon (Salmo salar L.) in a sea cage. Aquacultural Engineering, 12: 1-18.

Kanwisher, J.K., Lawson, K. and Sundnes, G. 1974. Acoustic telemetry from fish. Fishery Bulletin, U.S., 72: 251-255.

Karlsson, L., Ikonen, E., Westerberg, H. and Sturlaugsson, J. 1996. Use of data storage tags to study the spawning
migration of Baltic salmon (Salmo salar L.) in the Gulf of Bothnia. ICES C.M. 1996/M:9, Ref. J, 15 pp (mimeo).

Karlsson, L., Ikonen, E., Westerberg, H. and Sturlaugsson, J. 1999. Data storage tag study of salmon (Salmo salar)
migration in the Baltic: The spawning migration of wild and hatchery-reared fish and a comparision of tagging
methods. ICES CM 1999/AA:05, 17 pp (mimeo).

Kaseloo, P.A., Weatherley, A.H., Ihssen, P.E., Anstey, D.A. and Gare, M.D. 1996. Electromyograms from radiotelemetry
as indicators of reproductive activity in lake trout. Journal of Fish Biology, 48: 664-674.

Keniry, M.J. Brofka, W.A., Horns, W.H. and Marsden, J.E. 1996. Effects of decompression and puncturing the gas
bladder on survival of tagged yellow perch. North American Journal of Fisheries Management, 16: 201-206.

Kingman, A. 1996. Satellite tracking of blue sharks. Shark News, (7): 6.

Kittigawa, T., Nakata, H., Kimura, S., Itoh, T., Tsuji, S. and Nitta, A. 2000. Effect of ambient temperature on the vertical
distribution and movement of Pacific bluefin tuna Thunnus thynnus orientalis. Marine Ecology Progress Series,
206: 251-260.

Klimley, A.P. and Holloway, C.F. 1999. School fidelity and homing synchronicity of yellowfin tuna, Thunnus albacares.
Marine Biology, 133: 307-317.

Klimley, A.P., Voegeli, F. , Beavers, S.C. and Le Boeuf, B.J. 1998. Automated listening stations for tagged marine fishes.
Marine Technology Society Journal, 32: 94-101.

Knights, B.C. and Lasee, B.A. 1996. Effects of implanted transmitters on adult bluegills at two temperatures.
Transactions of the American Fisheries Society, 125: 440-449.

Kreiberg, H. and Powell, J. 1991. Metomidate sedation reduces handling stress in chinook salmon. World Aquaculture,
22: 58-59.

Lacroix, G.L. and McCurdy, P. 1996. Migratory behaviour of post-smolt Atlantic salmon during initial stages of seaward
migration. Journal of Fish Biology, 49: 1086- 1101.

Lacroix, G.L. and Voegeli, F.A. 2000. Development of automated monitoring systems for ultrasonic transmitters. Pp 37-
50 in Moore, A., and Russell, I., Advances in Fish Telemetry. Proceedings of the Third Conference on Fish
Telemetry in Europe, held in Norwich, England, 20-25 June 1999, CEFAS Lowestoft, 264 pp.

Lagardere, J.P., Ducamp, J.J., Frikha, L. and Sperandio, M. 1988. Ultrasonic tracking of common sole juveniles (Solea
vulgaris Quensel, 1806) in a saltmarsh: methods and fish response to some environmental factors. Journal of
Applied Ichthyology, 4: 87-96.

Lagardère, J.-P., Ducamp, J.-J., Favre, L., Dupin, J.M. and Spérandio, M. 1990. A method for the quantitative evaluation
of fish movements in salt ponds by acoustic telemetry. Journal of Experimental Marine Biology and Ecology, 141:
221-236.

Laughton, R. and Smith, G.W. 1992. The relationship between the date of river entry and the estimated spawning position
of adult Atlantic salmon (Salmo salar L.) in two major Scottish east coast rivers. Pp 423-433 in Wildlife Telemetry:
remote monitoring and tracking of animals, Priede, I.G. and Swift, S. M. (eds.), Ellis Horwood, New York, 708 pp.

Laurs, R.M., Yuen, H.S.H. and Johnson, J.H. 1977. Small-scale movements of albacore, Thunnus alalunga, in relation to
ocean features as indicated by ultrasonic tracking and oceanographic sampling. Fishery Bulletin, U.S., 75: 347-355.

Lawson, K.D. and Carey, F.G. 1972. An acoustic telemetry system for transmitting body and water temperature from free
swimming fish. Woods Hole Oceanographic Institution Technical Report, WHOI-71-67, 25 pp.

Leggett, W.C. and Jones, R.A. 1971. Net avoidance behavior in American shad (Alosa sapidissima) as observed by
ultrasonic tracking techniques. Journal of the Fisheries Research Board of Canada, 28: 1167-1171.

Løkkeborg, S. 1998. Feeding behaviour of cod, Gadus morhua: activity rhythm and Chemically mediated food search.
Animal Behaviour, 56: 371 - 378.

Løkkeborg, S. and Fernö, A. 1999. Diel activity pattern and food search behaviour in cod, Gadus morhua. Environmental
Biology of Fishes, 54: 345-353.

Lowe, C.G. and Goldman, K.J. 2001. Thermal and bioenergetics of elasmobranchs: bridging the gap. Environmental
Biology of Fishes, 60: 252-266.

Lowe, C.G., Holland, K.N. and Wolcott, T.G. 1998. A new acoustic tailbeat transmitter for fishes. Fisheries Research, 36:
275-283.

Lucas, M.C., Johnstone, A.D.F. and Priede, I.G. 1993. Use of physiological telemetry as a method of estimating
metabolism of fish in the natural environment. Transactions of the American Fisheries Society, 122: 822-833.



90

Lund, W.A. and Lockwood, R.C. 1970. Sonic tag for large decapod crustaceans. Journal of the Fisheries Research Board
of Canada, 27: 1147-1151.

Lutcavage, M.E., Brill, R.W., Skomal, G.B., Chase, B.C. and Howey, P.W. 1999. Results of pop-up satellite tagging of
spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Canadian
Journal of Fisheries and Aquatic Sciences, 56: 173-177.

Lutcavage, M.E., Brill, R.W., Skomal, G.B., Chase, B.C, Goldstein, J.L. and Tutein, J. 2000. Tracking adult North
Atlantic bluefin tuna (Thunnus thynnus) in the northwestern Atlantic using ultrasonic telemetry. Marine Biology,
137: 347-358.

Marcinek, D.J., Blackwell, S.B., Dewar, H., Freund, E.V., Farwell, C., Dau, D., Seitz, A.C. and Block, B.A. 2001. Depth
and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Marine
Biology, 138: 869-885.

Marsac, F. and Cayré, P. 1998. Telemetry applied to behaviour analysis of yellowfin tuna (Thunnus albacares, Bonnaterre,
1788) movements in a network of fish aggregating devices. Pages 155-171 in Lagardère, J.P., Bégout Anras, M.-L.
and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 360 pp. Hydrobiologia, 371/372.

Marty, G.D. and Summerfelt, R.C. 1986. Pathways and mechanisms for expulsion of surgically implanted dummy
transmitters from channel catfish. Transactions of the American Fisheries Society, 115: 577-589.

Marty, G.D. and Summerfelt, R.C. 1990. Wound healing in channel catfish by epithelialization and contraction of
granulation tissue. Transactions of the American Fisheries Society, 119: 145-150.

Matthews, K.R. 1992. A telemetric study of the home ranges and homing routes of lingcod Ophiodon elongatus on
shallow rocky reefs off Vancouver Island, British Columbia. Fishery Bulletin, U.S., 90: 784 - 790.

McCleave, J.D. and Stred, K.A. 1975. Effect of dummy telemetry transmitters on stamina of Atlantic salmon (Salmo
salar) smolts. Journal of the Fisheries Research Board of Canada, 32: 559-563.

McCleave, J.D. and Arnold, G.P. 1999. Movements of yellow- and silver-phase European eels (Anguilla anguilla L.)
tracked in the western North Sea. ICES Journal of Marine Science, 56: 510-536.

McCleave, J.D., Power, J.H. and Rommel, S.A. 1978. Use of radio telemetry for studying upriver migration of adult
Atlantic salmon (Salmo salar). Journal of Fish Biology, 12: 549-558.

McConnell, B.J., Chambers, C., Nicholas, K.S. and Fedak, M.A. 1992. Satellite tracking of grey seals (Halichoerus
grypus). Journal of Zoology (London), 226: 271-282.

McCosker, J.E. 1987. The white shark, Carcharodon carcharias, has a warm stomach. Copeia 1987(1): 195-197.

Mee, D.M., Kirkpatrick, A.J. and Stonehewer, R.O. 1996. Post impoundment fishery investigations on the Tawe Barrage,
South Wales. Pp 395-408 in Burt, N. & Watts, J. (eds.), Barrages: engineering design and environmental impacts,
John Wiley and Sons, Chichester, 504 pp.

Meeren, G.I. van der. 1997. Preliminary acoustic tracking of native and transplanted European lobsters (Homarus
gammarus) in an open sea lagoon. Marine and Freshwater Research, 48: 915-921.

Mellas, E.J. and Haynes, J.M. 1985. Swimming performance and behavior of rainbow trout (Salmo gairdneri) and white
perch (Morone americana): effects of attaching telemetry transmitters. Canadian Journal of Fisheries and Aquatic
Sciences, 42: 488-493.

Metcalfe, J.D. and Arnold, G.P. 1997. Tracking fish with electronic tags. Nature, 387: 665-666.

Metcalfe, J.D. and Arnold, G.P. 1998. Tracking migrating fish with electronic tags. Pp 199-206 in EEZ Technology: a
review of advanced technologies for the management of EEZs world-wide (2nd edition). London, ICG Publishing,
240 pp.

Metcalfe, J.D., Holford, B.H. and Arnold, G.P. 1993. Orientation of plaice (Pleuronectes platessa) in the open sea:
evidence for the use of external directional clues. Marine Biology, 117: 559-566.

Metcalfe, J.D., Arnold, G.P. and Holford, B.H. 1994. The migratory behaviour of plaice in the North Sea as revealed by
data storage tags. ICES C.M. 1994/Mini:11, 13 pp (mimeo).

Mitson, R.B. and Storeton-West, T.J. 1971. A transponding acoustic fish tag. The Radio and Electronic Engineer, 41:
483-489.

Mitson R.B, Storeton-West, T.J. and Pearson, N.D. 1982. Trials of an acoustic transponding fish tag compass.
Biotelemetry and Patient Monitoring, 9: 69-79.

Mohus, I. and Holand, B. 1983. Fish Telemetry Manual. Report STF48 A83040, SINTEF, The Foundation of Scientific
and Industrial Research at the Norwegian Institute of Technology, N-7034, Trondheim, Norway.

Monan, G.E. and Thorne, D.L. 1973. Sonic tags attached to Alaska king crab. Marine Fisheries Review, 35: 18-21.

Monan, G.E., Johnson, J.H. and Esterberg, G.F. 1975. Electronic tags and related tracking techniques aid in study of
migrating salmon and steelhead trout in the Columbia River basin. Marine Fisheries Review, 37: 9-15.

Moore, A. and Potter, E.C.E. 1994. The movement of wild sea trout, Salmo trutta L., smolts through a river estuary.
Fisheries Management and Ecology, 1: 1-14.

Moore, A., Russell, I.C. and Potter, E.C.E. 1990a. The effects of intraperitoneally implanted dummy acoustic transmitters
on the behaviour and physiology of juvenile Atlantic salmon, Salmo salar L. Journal of Fish Biology, 37: 713-721.



91

Moore, A., Russell, I.C. and Potter, E.C.E. 1990b. Preliminary results from the use of a new technique for tracking the
estuarine movements of Atlantic salmon, Salmo salar L., smolts. Aquaculture and Fisheries Management, 21: 369-
371.

Moore, A., Potter, E.C.E. and Buckley, A.A. 1992. Estuarine behaviour of migrating Atlantic salmon (Salmo salar L.)
smolts. Pp 389-399 in Wildlife Telemetry: remote monitoring and tracking of animals, Priede, I. G. and Swift, S.
M. (eds.), Ellis Horwood, New York, 708 pp.

Moore, A., Lacroix, G.L. and Sturlaugsson, J. 2000. Tracking Atlantic salmon post-smolts in the sea. Pp 49-64 in Mills,
D. (ed.), The Ocean Life of Atlantic Salmon, Fishing News Books, Blackwell Science, Oxford, 228 pp.

Moore, A., Potter, E.C.E., Milner, N.J. and Bamber, S. 1995. The migratory behaviour of wild Atlantic salmon (Salmo
salar) smolts in the estuary of the River Conwy, North Wales. Canadian Journal of Fisheries and Aquatic
Sciences, 52: 1923-1935.

Moore, A., Ives, M., Scott, M. and Bamber, S. 1998. The migratory behaviour of wild sea trout (Salmo trutta L.) smolts in
the estuary of the River Conwy, North Wales. Aquaculture, 168: 57-68.

Moore, A., Storeton-West, T.J., Russell, I.C., Potter, E.C.E. and Challiss, M.J. 1990c. A technique for tracking Atlantic
salmon (Salmo salar L.) smolts through estuaries. ICES C.M. 1990/M:18, 4 pp (mimeo).

Moore, A., Stonehewer, R., Kell, L.T., Challiss, M. J., Ives, M., Russell, I.C., Riley, W.D. and Mee, D.M. 1996. The
movements of emigrating salmonid smolts in relation to the Tawe Barrage, Swansea. Pp 409-417 in N. Burt and J.
Watts (eds.), Barrages: engineering design and environmental impacts, John Wiley and Sons, Chichester, 504 pp.

Mortensen, D.G. 1990. Use of staple sutures to close surgical incisions for transmitter implants. American Fisheries
Society Symposium, (7): 380-383.

Moser, M.L., Olson, A.F. and Quinn, T.P. 1991. Riverine and estuarine migratory behaviour of coho salmon
(Oncorhynchus kisutch) smolts. Canadian Journal of Fisheries and Aquatic Sciences, 48: 1670-1678.

Mulford, C.J. 1984. Use of a surgical skin stapler to quickly close incisions in striped bass. North American Journal of
Fisheries Management, 4: 571-573.

Myklevoll, S. 1994. Description of Norwegian mackerel tagging equipment and procedures. Institute of Marine Research,
Bergen, Norway, 6 pp (mimeo).

Naito, Y. 1997. VIII. Development of a microdata tag for study of free ranging marine animals. Memoirs of the Faculty of
Fisheries Hokkaido University, 44: 31-34.

Nakamura, Y. 1991. Tracking of the mature female of flying squid, Ommastrephes bartrami, by an ultrasonic transmitter.
Bulletin of the Hokkaido National Fisheries Research Institute, 55: 205-207.

Nakamura, Y. 1993. Vertical and horizontal movements of mature females of Ommastrephes bartrami observed by
ultrasonic telemetry. Pp 331-336 in Okutani, T., O’Dor, R.K. and Kubodera, T. (eds.), Recent Advances in
Fisheries Biology, Tokai University Press, Tokyo.

NASCO. 1993. NASCO tag return inventive scheme. CNL (93) 19, Annex 12, pages 115-117, Report of the Tenth Annual
Meeting of the Council, North Atlantic Salmon Conservation Organisation, Edinburgh. CNN (93) 49, 209 pp.

Nelson, D.R. 1976. Ultrasonic telemetry of shark behavior. Journal of the Acoustic Society of America, 59: 1004-1007.

Nelson, D.R. 1978. Telemetering techniques for the study of free-ranging sharks. Pp 419-482 in Sensory Biology of
Sharks, Skates, and Rays. Hodgson, E.S. & Mathewson, R.F. (eds.), Office of Naval Research, Department of the
Navy, Arlington, Va., USA, 666 pp.

Nelson, D.R., McKibben, J.N., Strong, W.R., Lowe, C.G., Sisneros, J.A., Schroeder, D.M. and Lavenberg, R.J. 1997. An
acoustic tracking of a megamouth shark, Megachasma pelagios: a crepuscular vertical migrator. Environmental
Biology of Fishes, 49: 389-399.

Nemetz, T.G. and MacMillan, J.R. 1988. Wound healing of incisions closed with a cyanoacrylate adhesive. Transactions
of the American Fisheries Society, 117: 190-195.

Nielsen, L.A. 1992. Methods of marking fish and shellfish. American Fisheries Society Special Publication, (23),
Bethesda, Maryland, 208 pp.

Niezgoda, G.H., McKinley, R.S., White, D., Anderson, W.G. and Cote, D. 1998. A dynamic combined acoustic and radio
transmitting tag for diadromous fish. Pages 47-52 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.),
Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp.
Hydrobiologia 371/372.

Nordeide, J.T. and Kjellsby, E. 1999. Sound from spawning cod at their spawning grounds. ICES Journal of Marine
Science, 56: 326-332.

Oddsson, G., Pikitch, E.K., Dickhoff, W. and Erickson, D.L. 1994. Effects of towing, sorting and caging on physiological
stress indicators and survival in trawl caught and discarded Pacific halibut (Hippoglossus stenolepis Schmidt 1904).
Pp 437-442 in MacKinlay, D.D. (ed.), High Performance Fish: Proceedings of an International Fish Physiology
Symposium at the University of British Columbia in Vancouver, Canada, July 16–21, 1994, Vancouver, BC,
Canada Fish Physiology Association 1994.

O’Dor, R.K., Hoar, J.A., Webber, D.M., Carey, F.G., Tanaka, S., Martins, H.R. and Porteiro, F.M. 1994. Squid (Loligo
forbesi) performance and metabolic rates in nature. Marine and Freshwater Behaviour and Physiology, 25: 163-
177.



92

O’Dor, R.K., Andrade, Y., Webber, D.M., Sauer, W.H.H., Roberts, M.J., Smale, M.J. and Voegeli, F.M. 1998.
Applications and performance of Radio-Acoustic Positioning and Telemetry (RAPT) systems. Pages 1-8 in
Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp. Hydrobiologia, 371/372.

Ogura, M. 1994. Migratory behavior of Pacific salmon (Oncorhynchus spp.) in the open sea. National Research Institute
of Far Seas Fisheries, Bulletin (31), 1-139.

Ogura, M. 1997. Acoustic and archival tagging work on salmonids in Japan. Pp 16-27 in Application of acoustic and
archival tags to assess estuarine, nearshore, and offshore habit utilization and movement by salmonids. Boehlert,
G.W. (ed.), NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-236, 62 pp.

Ogura, M. and Ishida, Y. 1992. Swimming behavior of coho salmon, Oncorhynchus kisutch, in the open sea as determined
by ultrasonic telemetry. Canadian Journal of Fisheries and Aquatic Sciences, 49: 453-457.

Ogura, M. and Ishida, Y. 1995. Homing behavior and vertical movements of four species of Pacific salmon
(Oncorhynchus spp.) in the central Bering Sea. Canadian Journal of Fisheries and Aquatic Sciences, 52: 532-540.

Økland, F., Finstad, B., McKinley, R.S., Thorstad, E.B. and Booth, R.K. 1997. Radio- transmitted electromyogram signals
as indicators of physical activity in Atlantic salmon. Journal of Fish Biology, 51: 476-488

Olsen, F.W., Kuehl, E.S., Burton, K.W. and Sigg, J.S. 1990. Use of radiotelemetry to estimate the survival of saugers
passed through turbines and spillbays at dams. American Fisheries Society Symposium, (7): 357-363.

Ona, E. 1990. Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine
Biological Association of the United Kingdom, 70: 107-127.

Osborne, R. and Bettoli, P.W. 1995. A reusable ultrasonic tag and float assembly for use with large pelagic fish. North
American Journal of Fisheries Management, 15: 512-514.

Oswald, R.L. 1978. The use of telemetry to study light synchronization with feeding and gill ventilation rates in Salmo
trutta. Journal of Fish Biology, 13: 729-739.

Pankhurst, N.W. and Dedual, M. 1994. Effects of capture and recovery on plasma levels of cortisol, lactate and gonadal
steroids in a natural population of rainbow trout. Journal of Fish Biology, 45: 1013-1025.

Peake, S., McKinley, R.S., Scruton, D.A. and Moccia, R. 1997a. Influence of transmitter attachment procedures on
swimming performance of wild and hatchery-reared Atlantic salmon smolts. Transactions of the American
Fisheries Society, 126: 707-714.

Peake, S., McKinley, R.S., Beddow, T.A. and Marmulla, G. 1997b. New procedure for radio transmitter attachment:
oviduct insertion. North American Journal of Fisheries Management, 17: 757- 762.

Pearcy, W.G. 1992. Movements of acoustically-tagged yellowtail rockfish Sebastes flavidus on Heceta Bank, Oregon.
Fishery Bulletin, U.S., 90: 726-735.

Pearson, N.D. and Storeton-West, T.J. 1987. The design of an acoustic transponding compass tag for free-swimming fish.
In Electronics for Ocean Technology, IERE Conference Proceedings, (72): 83-92.

Pedersen, B.H. and Andersen, N.G. 1985. A surgical method for implanting transmitters with sensors into the body cavity
of cod (Gadus morhua L.). Dana, 5: 55-62.

Pepperell, J.G. and Davis, T.L.O. 1999. Post-release behaviour of black marlin, Makaira indica, caught off the Great
Barrier Reef with sportfishing gear. Marine Biology, 135: 369-380.

Petering, R.W. and Johnson, D.L. 1991. Suitability of a cyanoacrylate adhesive to close incisions in black crappies used in
telemetry studies. Transactions of the American Fisheries Society, 120: 535-537.

Phillips, B.F., Joll, L.M. and Ramm, D.C. 1984. An electromagnetic tracking system for studying the movements of rock
(spiny) lobsters. Journal of Experimental Marine Biology and Ecology, 79: 9-18.

Potter, E.C.E. 1985. Salmonid migrations off the north-east coast of England. Pp 124-141 in Proceedings of the Institute
of Fisheries Management, 16th Annual Study Course, York, 16-19 September 1985.

Potter, E.C.E. 1988. Movements of Atlantic salmon, Salmo salar L., in an estuary in south-west England. Journal of Fish
Biology, 33, (Supplement A): 153-159.

Potter, E.C.E., Solomon, D.J. and Buckley, A.A. 1992. Estuarine movements of adult Atlantic salmon (Salmo salar L.) in
Christchurch Harbour, southern England. Pp 400-409 in Wildlife Telemetry: remote monitoring and tracking of
animals, Priede, I.G. and Swift, S.M. (eds.), Ellis Horwood, New York, 708 pp.

Prentice E.F., Flagg T.A. and McCutcheon, C.S. 1990a. Feasibility of using implantable passive integrated transponder
(PIT) tags in salmonids. American Fisheries Society Symposium, (7): 317-322.

Prentice E.F., Flagg, T.A., McCutcheon, C. S., Brastow, D.F. and Cross, D.C. 1990b. Equipment, methods, and an
automated data-entry station for PIT tagging. American Fisheries Society Symposium, (7): 335-340.

Priede, I.G. 1982. An ultrasonic salinity telemetry sensor for use on fish in estuaries. Biotelemetry and Patient
Monitoring, 9: 1-9.

Priede, I.G. 1986. The limitations of fish tracking systems: acoustic and satellite techniques. US Department of
Commerce, NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFC-(61) 1-17.

Priede, I.G. 1992. Wildlife telemetry: an introduction. Pp 3-25 in Priede, I.G. and Swift, S.M. (eds.), Wildlife Telemetry,
Ellis Horwood, New York, 708 pp.



93

Priede, I.G. and Tytler, P. 1977. Heart rate as a measure of metabolic rate in teleost fishes; Salmo gairdneri, Salmo trutta
and Gadus morhua. Journal of Fish Biology, 10: 231-242.

Priede, I.G. and Young, A.H. 1977. The ultrasonic telemetry of cardiac rhythms of wild brown trout (Salmo trutta L.) as
an indicator of bio-energetics and behaviour. Journal of Fish Biology, 10: 299-318.

Priede, I.G., Solbé, J.F. de L.G. and Nott, J.E. 1988. An acoustic oxygen telemetry transmitter for the study of exposure of
fish to variations in environmental dissolved oxygen. Journal of Experimental Biology, 140: 563-
567.

Priede, I.G., Smith, K.L. and Armstrong, J.D. 1990. Foraging behavior of abyssal grenadier fish: inferences from acoustic
tagging and tracking in the North Pacific Ocean. Deep-Sea Research, 37: 81-101.

Priede, I.G., Bagley, P.M. and Smith, K.L. 1994a. Seasonal change in activity of abyssal demersal scavenging grenadiers
Coryphaenoides (Nematonurus) armatus in the eastern North Pacific Ocean. Limnology and Oceanography, 39:
279-285.

Priede, I.G., Bagley, P.M., Armstrong, J.D., Smith, K.L. and Merrett, N.R. 1994b. Direct measurement of active dispersal
of food-falls by deep-sea demersal fish. Nature, 351: 647-649.

Priede, I.G., Bagley, P.M., Smith, A., Creasey, S. and Merrett, N.R. 1994c. Scavenging deep demersal fishes of the
Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. Journal of the Marine
Biological Association of the United Kingdom, 74: 481-498.

Prince, E.D. and Cort, J.L. 1997. Development of an Atlantic-wide archival tag recovery program under the auspices of
ICCAT. ICCAT, Collected Volume of Scientific Papers, XLVI (4): 468-471.

Rabben, H. and Furevik, D.M. 1993. Application of heart rate transmitters in behaviour studies on Atlantic halibut
(Hippoglossus hippoglossus). Aquacultural Engineering, 12: 129-140.

Ramm, D.C. 1980. Electromagnetic tracking of rock lobsters (Jasus novaehollandiae). Australian Journal of Marine and
Freshwater Research, 31: 263-269.

Reddin, D.G. and Short, P.B. 1991. Postsmolt Atlantic salmon (Salmo salar) in the Labrador Sea. Canadian Journal of
Fisheries and Aquatic Sciences, 48: 2-6.

Reynolds, J.B. 1983. Electrofishing. Pp 147-163 in Fisheries Techniques, Nielsen, L.A. and Johnson, D.L. (eds.),
American Fisheries Society, Bethesda, Maryland, USA, 468 pp.

Righton, D., Turner, K. and Metcalfe, J.D. 2000. Behavioural switching in North Sea cod: implications for foraging
strategy? ICES CM 2000/Q:09, 14 pp (mimeo).

Righton, D., Metcalfe, J. and Connolly, P. 2001a. Different behaviour of North and Irish Sea cod. Nature, 411, 156.

Righton, D., Metcalfe, J.D. and Arnold, G.P. 2001b. Vertical reality: utilising knowledge of cod behaviour to interpret
survey results. ICES, CM2001/Q:20, 15 pp (mimeo).

Rijnsdorp, A.D., Stralen, M. van and van der Veer, H.W. 1985. Selective tidal transport of North Sea plaice larvae
Pleuronectes platessa in coastal nursery areas. Transactions of the American Fisheries Society, 114: 461-470.

Roberts, R.J., MacQueen, A., Shearer, W.M. and Young, H. 1973a. The histopathology of salmon tagging I. The tagging
lesion in newly tagged parr. Journal of Fish Biology, 5: 497-503.

Roberts, R.J. and MacQueen, A., Shearer, W.M. and Young H. 1973b. The histopathology of salmon tagging. II. The
chronic tagging lesion in returning adult fish. Journal of Fish Biology, 5: 615-619.

Roberts, R.J., MacQueen, A., Shearer, W.M. and Young, H. 1973c. The histopathology of salmon tagging. III.
Secondary infections associated with tagging. Journal of Fish Biology, 5: 621-623.

Rogers, S.C., Church, D.W., Weatherley, A.H. and Pincock, D.G. 1984. An automated ultrasonic telemetry system for the
assessment of locomotor activity in free-ranging rainbow trout, Salmo gairdneri, Richardson. Journal of Fish
Biology, 25: 697-710.

Ross, M.J. and Kleiner, C.F. 1982. Shielded needle technique for surgically implanting radio frequency transmitters in
fish. The Progressive Fish-Culturist, 44: 41-43.

Ross, L.G., Watts, W. and Young, A.H. 1981. An ultrasonic biotelemetry system for the continuous monitoring of tail-beat
rate from free-swimming fish. Journal of Fish Biology, 18: 479-490.

Russell, I.C., Moore, A., Ives, S., Kell, L.T., Ives, M.J. and Stonehewer, R.O. 1998. The migratory behaviour of juvenile
and adult salmonids in relation to an estuarine barrage. Pages 321-333 in Lagardère, J.P., Bégout Anras, M.-L. and
Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 360 pp. Hydrobiologia 371/372.

Sangster, G.I. and Lehmann, K.M. 1994. Commercial fishing experiments to assess the scale damage and survival of
haddock and whiting after escape from four sizes of diamond mesh cod-ends. ICES, CM 1994/B:38, 64 pp
(mimeo).

Sauer, W.H.H., Roberts, M.J., Lipinski, M.R., Hanlon, R.T., Webber, D.M. and O’Dor, R.K. 1997. Choreography of the
squid’s “nuptial dance”. Biological Bulletin, 192: 203-207.

Scharold, J. and Gruber, S.H. 1991. Telemetered heart rate as a measure of metabolic rate in the lemon shark, Negaprion
brevirostris. Copeia 1991(4): 942-953.



94

Schmutz, C., Giefing C. and Wiesner, C. 1998. The efficiency of a nature-like bypass channel for pike-perch (Stizostedion
lucioperca) in Marchfeldkanalsystem. Pages 355-360 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G.
(eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands,
360 pp. Hydrobiologia 371/372.

Schramm, H.L. and Black, D.J. 1984. Anaesthesia and surgical procedures for implanting radio transmitters into grass
carp. The Progressive Fish-Culturist, 46: 185-190.

Sharpe, C.S., Thompson, D.A., Blankenship, H.L. and Schreck, C.B. 1998. Effects of routine handling and tagging
procedures on physiological stress responses in juvenile chinook salmon. The Progressive Fish-Culturist, 60: 81 -
87.

Skajaa, K., Fernö, A., Løkkeborg, S. and Haugland, E.K. 1998. Basic movement pattern and chemo-orientated search
towards baited pots in edible crab (Cancer pagurus L.). Pages 143-153 in Lagardère, J.P., Bégout Anras, M.-L. and
Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 360 pp. Hydrobiologia 371/372.

Smith, G.W., Hawkins, A.D., Urquhart, G.G. and Shearer, W.M. 1981. Orientation and energetic efficiency in the offshore
movements of returning Atlantic salmon (Salmo salar L.). Scottish Fisheries Research Report, (21), 1-22.

Smith, G.W., Urquhart, G.G., MacLennan, D.N. and Sarno, B. 1998. A comparison of theoretical estimates of the errors
associated with ultrasonic tracking using a fixed hydrophone array and field measurements. Pages 9-17 in
Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp. Hydrobiologia, 371/372.

Smith, I.P. and Smith, G.W. 1997. Tidal and diel timing of river entry by adult Atlantic salmon returning to the
Aberdeenshire Dee, Scotland. Journal of Fish Biology, 50: 463-474.

Smith, I.P., Collins, K.J. and Jensen, A.C. 1998a. Electromagnetic telemetry of lobster (Homarus gammarus (L.))
movements and activity: preliminary results. Pages 133-141 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux,
G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 360 pp. Hydrobiologia, 371/372.

Smith, I.P., Collins, K.J. and Jensen, A.C. 1998b. Movement and activity patterns of the European lobster, Homarus
gammarus, revealed by electromagnetic telemetry. Marine Biology, 132: 611-623.

Smith, I.P., Collins, K.J. and Jensen, A.C. 1999. Seasonal changes in the level and diel pattern of activity in the European
lobster Homarus gammarus. Marine Ecology Progress Series, 186: 255-264.

Smith, I.P., Collins, K.J. and Jensen, A.C. 2000. Digital electromagnetic system for studying behaviour of decapod
crustaceans. Journal of Experimental Marine Biology and Ecology, 247: 209-222.

Soldal, A.V., Engås, A. and Isaksen, B. 1993. Survival of gadoids that escape from a demersal trawl. ICES Marine
Science Symposia, 196: 122-127.

Soldal, A.V., Isaksen, B., Marteinsson, J.E. and Engaas, A. 1991. Scale damage and survival of cod and haddock escaping
from a demersal trawl. ICES C.M.1991/B:44, 12 pp (mimeo).

Soldal, A.V., Brønstad, O., Humborstad, O-B, Jørgensen, T., Løkkeborg, S. and Svellingen, I. 1998. Oil production
structures in the North Sea as fish aggregating devices. ICES CM 1998/U:11, 10 pp (mimeo).

Solomon, D.J. and Hawkins, A.D. 1981. Fish capture and transport. Pp 197-221 in Hawkins A.D. (ed.), Aquarium
Systems, Academic Press, London, 452 pp.

Solomon, D.J. and Storeton-West, T.J. 1983. Radio tracking of migratory salmonids in rivers: development of an effective
system. Fisheries Research Technical Report, MAFF Directorate of Fisheries Research, Lowestoft, (75): 1-11.

Solomon, D.J. and Potter, E.C.E. 1988. First results with a new estuarine fish tracking system. Journal of Fish Biology, 33
(Supplement A): 127-132.

Standora, E.A. and Nelson, D.R. 1977. A telemetric study of the behaviour of freeswimming Pacific angel sharks,
Squatina californica. Southern California Academy of Science, Bulletin, 76: 193-201.

Starr, R.M., Heine, J.N. and Johnson, K.A. 2000. Techniques for tagging and tracking deepwater rockfishes. North
American Journal of Fisheries Management, 20: 597-609.

Stasko, A.B. and Horrall, R.M. 1976. Method of counting tailbeats of free-swimming fish by ultrasonic telemetry
techniques. Journal of the Fisheries Research Board of Canada, 33: 2596-2598.

Stasko, A.B. and Pincock, D.G. 1977. Review of underwater telemetry, with emphasis on ultrasonic techniques. Journal
of the Fisheries Research Board of Canada, 34: 1261-1285.

Stasko, A.B. and Polar, S.M. 1973. Hydrophone and bow-mount for tracking fish by ultrasonic telemetry. Journal of the
Fisheries Research Board of Canada, 30: 119- 121.

Steingrund, P. 1999. Studies of vertical migration of wild Faroe Plateau cod by use of Data Storage Tags. ICES CM
1999/AA:02, 8 pp, (mimeo).

Stevens, J. 1996. Archival tagging of sharks in Australia. Shark News, (7): 10.

Stickney, R.R. 1983. Care and handling of live fish. Pp 85-94 in Fisheries Techniques, Nielsen, L.A. and Johnson, D.L.
(eds.), American Fisheries Society, Bethesda, Maryland, USA, 468 pp.



95

Storeton-West, T.J., Mitson, R.B. and Greer Walker, M. 1978. Fish heart rate telemetry in the open sea using sector
scanning sonar. Biotelemetry and Patient Monitoring, 5: 149-153.

Sturlaugsson, J. 1995. Migration study on homing of Atlantic salmon (Salmo salar L.) in coastal waters W-Iceland. ICES
C.M. 1995/M:17, 13 pp (mimeo).

Sturlaugsson, J. and Gudbjornsson, S. 1997. Tracking of Atlantic salmon (Salmo salar L.) and sea trout (Salmo trutta L.)
with Icelandic data storage tags. Pp 52-54 in Boehlert, G.W. (ed.). Application of acoustic and archival tags to
assess estuarine, nearshore, and offshore habitat utilization and movement by salmonids. NOAA Technical
Memorandum, NOAA-TM-NMFS-SWFSC-236, 62 pp.

Sturlaugsson, J. and Johansson, M. 1996. Migratory pattern of wild sea trout (Salmo trutta L.) in SE-Iceland recorded by
data storage tags. ICES, C.M. 1996/M:5, 23 pp (mimeo).

Sturlaugsson, J. and Johansson, M. (in press). Migration study of wild sea trout (Salmo trutta L.) in SE-Iceland: depth
movements and water temperatures recorded by data storage tags in freshwater and marine environment. In Le
Maho, Y. (ed.), Proceedings of the 5th European Conference on Wildlife Telemetry, Strasbourg, France, 26-30
August 1996 (in press).

Sturlaugsson, J. and Thorisson, K. 1995. Postsmolts of ranched Atlantic salmon (Salmo salar L.) in Iceland: II. The first
days of the sea migration. ICES, C.M. 1995/M:15, 17 pp (mimeo).

Sturlaugsson, J. and Thorisson, K. 1997. Migratory pattern of homing Atlantic salmon (Salmo salar L.) in coastal waters
W-Iceland, recorded by data storage tags. ICES C.M. 1997/CC:09, 16 pp (mimeo).

Sturlaugsson, J., Jónsson, I.R. and Tómasson, T. 1998. Sea migration of anadromous arctic char (Salvelinus alpinus)
recorded by data storage tags. ICES, C.M. 1998/N:22 (summary).

Summerfelt, R.C. and Smith, L.S. 1990. Anesthesia, surgery and related techniques. Pp 213-272 in Schreck, C.B. and
Moyle, P.B. (eds.), Methods for Fish Biology, American Fisheries Society, Bethesda, Maryland, USA, 684 pp.

Sundström, L.F. and Gruber, S.H. 1998. Using speed-sensing transmitters to construct a bioenergetics model for subadult
lemon sharks, Negaprion brevirostris (Poey), in the field. Pages 241-247 in Lagardère, J.P., Bégout Anras, M.-L.
and Claireaux, G. (eds.), Advances in Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 360 pp. Hydrobiologia, 371/372.

Sundström, L.F., Gruber, S.H., Clermont, S.M., Correia, J.P.S., Marignac, J.R.C. de, Morrissey, J.F., Lowrance, C.R.,
Thomassen, L. and Oliviera, M.T. 2001. Review of elasmobranch behavioral studies using ultrasonic telemetry
with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas. Environmental
Biology of Fishes, 60: 225-250.

Sureau, D. and Lagardère, J.-P. 1991. Coupling of heart rate and locomotor activity in sole, Solea solea (L.), and bass,
Dicentrarchus labrax (L.), in their natural environment by using ultrasonic telemetry. Journal of Fish Biology, 38:
399-405.

Svendsen, Y.S. 1995. Tracking juvenile cod (Gadus morhua L.) in northern Norway using acoustic tags. Fisheries
Research, 23: 311-318.

Taillade, M. 1992. Animal tracking by satellite. Pp 149-160 in Priede, I.G. and Swift, S.M. (eds.), Wildlife Telemetry:
remote monitoring and tracking of animals, Ellis Horwood, New York, 708 pp.

Tanaka, H., Takagi, Y., Iwata, M. and Naito, Y. 1998. The behavior and ambient temperature of homing chum salmon
monitored by a data logger. Proceedings of NIPR Symposium on Polar Biology, 11, 62-73.

Tesch, F.-W. 1974. Speed and direction of silver and yellow eels, Anguilla anguilla, released and tracked in the open
North Sea. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung, 23: 181-197.

Tesch, F-W., Westerberg, H. and Karlsson, L. 1991. Tracking studies on migrating silver eels in the central Baltic.
Meeresforschung, 33: 183-196.

Thompson, D., Hammond, P.S., Nicholas, K.S. and Fedak, M.A. 1991. Movements, diving and foraging behaviour of grey
seals (Halichoerus grypus). Journal of Zoology (London), 224: 223-232.

Thoreau, X. and Baras, E. 1997. Evaluation of surgery procedures for implanting telemetry transmitters into the body
cavity of tilapia Oreochromis aureus. Aquatic Living Resources, 10: 207-211.

Thorpe, J.E., Ross, L.G., Struthers, G. and Watts, W. 1981. Tracking Atlantic salmon smolts, Salmo salar L., through
Loch Voil, Scotland. Journal of Fish Biology, 19: 519-537.

Thorsteinsson, V. 1995. Tagging experiments using conventional tags and electronic data storage tags for the observations
of migration, homing and habitat choice in the Icelandic spawning stock of cod. ICES CM 1995/B:19, 16 pp
(mimeo).

Thorsteinsson, V. and Marteinsdottir, G. 1998. Size specific time and duration of spawning of cod (Gadus morhua) in
Icelandic waters. ICES CM 1998/DD:5, 18 pp (mimeo).

Tuck, G.N., Polacheck, T., Croxall, J.P., Weimerskirch, H., Prince, P.A. and Wotherspoon, S. 1999. The potential of
archival tags to provide long-term movement and behaviour data for seabirds: first results from wandering albatross
Diomedea exulans of South Georgia and the Crozet Islands. Emu, 99: 60-68.

Tytler, P. and Blaxter, J.H.S. 1973. Adaptation by cod and saithe to pressure changes. Netherlands Journal of Sea
Research, 7: 31-45.



96

Tytler, P. and Hawkins, A.D. 1981. Vivisection, anaesthetics and minor surgery. Pp 247-78 in Hawkins, A.D. (ed.),
Aquarium Systems, Academic Press, London, 452 pp.

Tytler, P., Thorpe, J.E. and Shearer, W.M. 1978. Ultrasonic tracking of the movements of Atlantic salmon smolts (Salmo
salar L) in the estuaries of two Scottish rivers. Journal of Fish Biology, 12: 575-586.

Tyus, H.M. 1988. Long-term retention of implanted transmitters in Colorado squawfish and razorback sucker. North
American Journal of Fisheries Management, 8: 264-267.

Urquhart, G.G. and Smith, G.W. 1992. Recent developments of a fixed hydrophone array system for monitoring
movements of aquatic animals. Pp 342-353 in Priede, I.G. and Swift, S.M. (eds.), Wildlife Telemetry: remote
monitoring and tracking of animals, Ellis Horwood, New York, 708 pp.

Voegeli, F.A. and Pincock, D.G. 1981. Determination of fish swimming speed by ultrasonic telemetry. Biotelemetry and
Patient Monitoring, 7: 215-220.

Voegeli, F.A., Lacroix, G.L. and Anderson, J.M. 1998. Development of miniature pingers for tracking Atlantic salmon
smolts at sea. Pages 35-46 in Lagardère, J.P., Bégout Anras, M.-L. and Claireaux, G. (eds.), Advances in
Invertebrates and Fish Telemetry, Kluwer Academic Publishers, Dordrecht, The Netherlands, 360 pp.
Hydrobiologia, 371/372.

Voegeli, F.A., Smale, M.J., Webber, D.M., Andrade, Y. and O’Dor, R.K. 2001. Ultrasonic telemetry, tracking and
automated monitoring technology for sharks. Environmental Biology of Fishes, 60: 267-281.

Wada, K. and Ueno, Y. 1999. Homing behavior of chum salmon determined by an archival tag. (NPAFC Doc. 425).
Hokkaido National Fisheries Research Institute, 116 Katsurakoi, Kushiro, Hokkaido, 085-0802, Japan, 29 pp
(mimeo).

Walker, R.V., Myers, K.W., Davis, N.D., Aydin, K.Y., Friedland, K.D., Carlson, H.R., Boehlert, G.W., Urawa, S., Ueno, Y.
and Anma, G. (2000). Diurnal variation in thermal environment experienced by salmonids in the North Pacific as
indicated by data storage tags. Fisheries Oceanography, 9: 171-186.

Wanless, S. and Harriss, M.P. 1992. At-sea activity budgets of a pursuit-diving seabird monitored by radiotelemetry. Pp
591-598 in Priede, I. G. and Swift, S.M. (eds.), Wildlife Telemetry: remote monitoring and tracking of animals, Ellis
Horwood, New York, 708 pp.

Wanless, S., Harriss, M.P. and Russell, A.F. 1993. Factors influencing food-load sizes brought in by shags Phalacrocorax
aristotelis during chick rearing. Ibis, 135: 19-24.

Ward, P., Carlson, B., Weekly, M. and Brumbaugh, B. 1984. Remote telemetry of daily vertical and horizontal movement
of Nautilus in Palau. Nature, 309: 248-250.

Wardle, C.S. 1968. Physiological response of fish to capture and captivity. Report of the Challenger Society, 3: 37-38.

Wardle, C.S. 1981. Physiological stress in captive fish. Pp 403-414 in Hawkins A.D. (ed.), Aquarium Systems, Academic
Press, London, 452 pp.

Wardle, C.S. and Kanwisher, J.W. 1974. The significance of heart rate in free swimming cod, Gadus morhua: some
observations with ultra-sonic tags. Marine Behaviour and Physiology, 2: 311-324.

Watson, K.P. and Granger, R.A. 1998. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia
mydas). Journal of Experimental Biology, 201: 2497-2505.

Webb, J.H. 1998. Catch and release: the survival and behaviour of Atlantic Salmon angled and returned to the
Aberdeenshire Dee, in spring and early summer. Scottish Fisheries Research Report (62/1998), 1-16.

Webber, D.M. and O’Dor, R.K. 1986. Monitoring the metabolic rate and activity of free-swimming squid with telemetered
jet pressure. Journal of Experimental Biology, 126: 205-224.

Webber, D.M., McKinnon, G.P. and Claireaux, G. 2001. Evaluating differential pressure in the European sea bass
(Dicentrarchus labrax) as a telemetered index of swimming speed. Pp 297-313 in Sibert, J. and Nielsen, J. (eds.),
Electronic Tagging and Tracking in Marine Fisheries. Reviews: Methods and Technologies in Fish Biology and
Fisheries, Volume 1, Kluwer Academic Press, Dordrecht, The Netherlands.

Weimerskirch, H. and Wilson, R.P. 1992. When do wandering albatrosses Diomedea exulans forage? Marine Ecology
Progress Series, 86: 297-300.

Weimerskirch, H., Doncaster, C.P. and Cuenot-Chaillet, F. 1994. Pelagic seabirds and the marine environment: foraging
patterns of wandering albatrosses in relation to prey availability and distribution. Proceedings of the Royal Society
of London B, 255: 91-97.

Weihs, D. and Levin, D. 1997. Design of a pop-up tag for pelagic animals. Final Report, Project no. 160-782, Department
of Aeronautical Engineering, Technion Research and Development Foundation Ltd, Haifa 32000, Israel, 28 pp
(mimeo).

Welch, D.W. and Eveson, J.P. 1999. An assessment of light-based geoposition estimates from archival tags. Canadian
Journal of Fisheries and Aquatic Sciences, 56: 1317-1327.

West, G.J. and Stevens, J.D. 2001. Archival tagging of school shark, Galeorhinus galeus, in Australia: initial results.
Environmental Biology of Fishes, 60: 283-298.

Westerberg, H. 1982a. Ultrasonic tracking of Atlantic salmon (Salmo salar L.) - I. Movements in coastal regions. Institute
of Freshwater Research Drottningholm, Report, 60: 81-101.



97

Westerberg, H. 1982b. Ultrasonic tracking of Atlantic salmon (Salmo salar L.) - II. Swimming depth and temperature
stratification. Institute of Freshwater Research, Drottningholm, 60: 102-120.

Westerberg, H., Sturlaugsson, J., Ikonen, E. and Karlsson, L. 1999a. Data storage tag study of salmon (Salmo salar)
migration in the Baltic: Behaviour and the migration route as reconstructed from SST data. ICES, CM 1999/AA:06,
18 pp (mimeo).

Westerberg, H., Eveson, P., Welch, D., Karlsson, L. and Ikonen, E. 1999b. Data storage tag study of salmon (Salmo salar)
migration in the Baltic: The performance of the tags. ICES, CM 1999/AA:07, 13 pp (mimeo).

Williams, H.T. and White, R.G. 1990. Evaluation of Pressure Sensitive Radio Transmitters Used for Monitoring Depth
Selection by Trout in Lotic Systems. American Fisheries Society Symposium, (7): 390- 394.

Williams, K. 1992. The tagging technique. Australian Fisheries, 51 (6): 15-17.

Wilson, R.P. and Culik, B.M. 1992. Packages on penguins and device-induced data. Pp 573-580 in Priede, I.G. and Swift,
S.M. (eds.), Wildlife Telemetry: remote monitoring and tracking of animals, Ellis Horwood, New York, 708 pp.

Wilson, R.P., Grant, W.S. and Duffy, D.C. 1986. Recording devices on free-ranging marine animals: does measurement
affect foraging performance? Ecology, 67: 1091-1093.

Wilson, R.P., Cooper, J. and Plötz, J. 1992. Can we determine when marine endotherms feed? A case study with seabirds.
Journal of Experimental Biology, 167: 267-275.

Wilson, R.P., Culik, B.M., Adelung, D., Spairani, H.J. and Coria, N.R. 1991. Depth utilisation by breeding Adélie
penguins, Pygoscelis adeliae, at Esperanza Bay, Antarctica. Marine Biology, 109: 181-189.

Wolcott, T.G. and Hines, A.H. 1989. Ultrasonic biotelemetry of muscle activity from free-ranging marine animals: a new
method for studying foraging by blue crabs (Callinectes sapidus). Biological Bulletin, 176: 50-56.

Wroblewski, J.S., Bailey, W. and Howse, K.A. 1994. Observations of adult Atlantic cod (Gadus morhua) overwintering
in nearshore waters of Trinity Bay, Newfoundland. Canadian Journal of Fisheries and Aquatic Sciences, 51: 142-
150.

Wroblewski, J.S., Goddard, S.V., Smedbol, R.K. and Bailey, W.L. 1995. Movements of Atlantic cod (Gadus morhua)
within the spring thermocline in Trinity Bay, Newfoundland. Journal of the Marine Biological Association of the
United Kingdom, 75: 265-284.

Wroblewski, J.S., Nolan, B.G., Rose, G.A. and de Young, B. 2000. Response of individual shoaling Atlantic cod to ocean
currents on the northeast Newfoundland Shelf. Fisheries Research, 45: 51-59.

Yamanka, K. L. and Richards, L. J. 1993. Movements of transplanted lingcod, Ophiodon elongatus, determined by
ultrasonic telemetry. Fishery Bulletin, U.S., 91: 582-587.

Yamashita, H. and Miyabe, N. 2000. Report of 1999 bluefin tuna archival tagging in the Mediterranean Sea conducted by
Japan. ICCAT SCRS/00/26, 15 pp. (mimeo).

Yano, A., Ogura, M., Sato, A., Sakaki, Y., Ban, M. and Nagasawa, K. 1996. Development of ultrasonic telemetry
technique for investigating the magnetic sense of salmonids. Fishery Science, 62: 698-704.

Yano, A., Ogura, M., Sato, A., Sakaki, Y., Shimuzu, Y., Baba, N. and Nagasawa, K. 1997. Effect of modified magnetic
field on the ocean migration of maturing chum salmon, Oncorhynchus keta. Marine Biology, 129: 523-530.

Yuen, H.S.H. 1970. Behavior of skipjack tuna, Katsuwonus pelamis, as determined by tracking with ultrasonic devices.
Journal of the Fisheries Research Board of Canada, 27: 2071-2079.

Young, A.H., Tytler, P., Holliday, F.G.T. and MacFarlane, A. 1972. A small sonic tag for measurement of locomotor
behaviour in fish. Journal of Fish Biology, 4: 57-65.

Yoza, K., Soeda, H., Shimamura, T., Hasegawa, E. and Yoshihara, K. 1985. On the horizontal swimming behaviour of
chum salmon in early migratory season off the coast of Shiretoko Peninsula. Bulletin of the Japanese Society of
Scientific Fisheries, 51: 1419-1423. (In Japanese - abstract in English).

Zeller, D.C. 1997. Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Marine
Ecology Progress Series, 154: 65-77.

Zeller, D.C. 1998. Spawning aggregations: patterns of movement of the coral trout Plectropomus leopardus (Serranidae) as
determined by ultrasonic telemetry. Marine Ecology Progress Series, 162: 253-263.

Zeller, D.C. 1999. Ultrasonic telemetry: its application to coral reef fisheries research. Fishery Bulletin, U.S., 97: 1058-
1065.

Zeller, D.C. and Russ, G.R. 1998. Marine reserves: patterns of adult movement of the coral trout (Plectropomus
leopardus (Serranidae)). Canadian Journal of Fisheries and Aquatic Sciences, 55: 917-924.



98

6. LEGISLATION

6.1 INTRODUCTION

All forms of fish tagging involve invasive processes, though tagging is usually much
less stressful than the capture process. Detrimental effects on fish are undesirable
scientifically - no-one wishes their data collection to be compromised because the tagged
fish do not behave normally, or have features of physiology or biochemistry that make them
unrepresentative of the background population. However, a further problem of invasive
procedures is that there may be conflict with public opinion, ethical committees or legal
statute. Furthermore, even if scientists are not subject to ethical/legal constraints in their own
countries, there can be impacts upon their ability to publish work - many scientific journals
are now unwilling to publish studies that involve procedures or experiments that would not
be legal in the country of publication.

6.2 FISH TAGGING AND THE LAW GOVERNING VIVISECTION

6.2.1 Background

Many countries have laws that control or prohibit ‘vivisection’ (dissection or other
painful treatment of living animals for purposes of scientific research; Oxford English
Dictionary). In the early 19th century, public movements developed to oppose cruelty to
animals (particularly horses, cattle and dogs) and common laws to prohibit cruelty to
domestic or wild animals by private citizens have been on the statute books of most
European countries for many years. Legislation controlling experimental work on animals
dates from the late 19th century, when physiological experiments upon live animals became
common. Almost without exception, such legislation was initially aimed at protecting higher
vertebrates, especially mammals - until 1986 the existing antivivisection legislation in the
UK required experimental animals to be kept ‘warm and dry’!

1986 was a crucial year in the vivisection legislation of most European countries,
because it coincided with the promulgation of a Directive by the Council of the European
Communities (86/609/CEE). Directives are not laws, so there is no European vivisection
legislation actionable in European courts. However, directives require Member States to
enact national legislation. Directive 86/609/CEE is extremely detailed and will not be
described here because of its lack of direct legal force. However, its aim was to avoid
inhumane treatment of non-human vertebrate animals.

Substantial opposition to scientific experiments upon animals has developed during
the past 30 years, particularly in the USA and Western Europe. As with most political
movements, this opposition encompasses many levels of opinion. At one extreme, a large
fraction of the public of several European countries opposes routine regulatory experiments
to test cosmetic compounds upon animals. Many such people are in favour of responsible
experimentation for biological/medical research, and are only concerned with protection of
mammals (and perhaps birds). At the other extreme are a variety of militant ‘animal-rights’
organisations who oppose all experiments upon animals and are prepared to move outside
the law to achieve a cessation of experimentation, even to the extent of damaging property,
intimidating scientists or using physical violence. Most animal-rights organisations are
particularly interested in protecting mammals or birds, and opposition to vivisection is
associated with initiatives to ban hunting of wild animals and prevent intensive farming of
poultry, pigs, cattle and fur-bearing mammals. However, such organisations have also
targeted fish experiments, intensive aquaculture and angling, although to a limited extent so
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far - the most prominent organisation at present is PISCES (see http://w.w.w.envirolink.org/
orgs/pisces), which specifically identifies fish-tagging as ‘an extremely traumatic
experience’.

Fishing itself (whether commercial or recreational) was for long not regarded as
involving cruelty, basically because it was believed that fish could not feel pain. However, in
recent years the fishing industry has attracted adverse international comment for practices
now deemed cruel (e.g. careless handling of discards, removal of sharks’ fins from living
animals), while anglers have been castigated for use of barbed hooks and (especially) fish as
live bait (illegal in several countries). The Royal Society for the Prevention of Cruelty to
Animals (RSPCA) is a British institution, but with a high international profile. In 1994 it
published a report ‘Pain and Stress in Fish’ (prepared by S C Kestin of Bristol University)
that concluded, inter alia, that:

• All the fundamental structures and modulation processes necessary to achieve a
perception of pain are present in fish

• Fish rapidly learn to avoid painful experiences, sometimes performing elaborate
processes, or depriving themselves of food for extended periods of time to do so

This report has attracted much attention - and a summary of it is in the top ten
Internet web sites displayed by several search engines in response to the search string
‘fish+tagging’, even though tagging itself is not considered in the report! It is now routinely
invoked in critical comment upon fishing and fish farming.

6.2.2 Legal control of tagging

It should be noted that even the most recently-introduced legislation was drafted
more than a decade ago, when fish tagging was largely carried out for identification and
involved external tags or minute injected tags; the drafters were not specifically aware of
Data Storage Tags (DSTs) and the increasing use of internal tags. Tagging was not generally
used in aquaculture at that time either, so the use of tagging on fish farms is not identified
separately. Within Europe, the legal position of fish tagging is very variable and there is no
pan-European law (beyond the 1986 86/609/CEE directive regarding humane treatment of
laboratory animals). The following sections are distillations of national legislation, most of
which either directly reflects the provisions of the EU Directive or hybridises those
provisions with earlier laws:

6.2.2.1 Austria

Austrian legislation makes no mention of fish tagging and was primarily developed
for medical experiments with mammals.

Permission for experiments which go beyond conventional agricultural or
veterinarian treatment are regulated by the Tierversuchgesetz 1988.

Only institutions with special licences are allowed to have experiments conducted on
their premises.

Performance of surgery on vertebrates is restricted to staff with veterinary, medical or
pharmacy qualifications, plus those biologists with special knowledge.

Experiments are controlled by the Ministry of Science & Transport which has set up
a commission to control permissions. The commission works without official rules.

Impact of tagging legislation: considerable: current experience is that permission
for surgically-implanted tags is unlikely to be given.
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6.2.2.2 Belgium

Belgian legislation, which is aimed primarily at mammals and birds makes no direct
mention of fish tagging. .

Legislation applies whenever surgery is used, and theoretically applies to all tagging.
The Ministry of Agriculture issues licences to directors of laboratories and licences

for projects. An appointed national ethics committee decides on the acceptability of projects.
The performance of a project is under the scrutiny of an expert local veterinarian.
Highly detailed reporting forms are filed annually.

Impact of tagging legislation: considerable, tightly controlled.

6.2.2.3 Denmark

Danish law was last revised in 1993. As with most European legislation, it was
primarily designed to apply to mammals.

As far as tagging is concerned, marking fish with external tags requires a licence
from the Ministry of Justice. The Animal Experiment Inspectorate deals with tagging
permissions and control. Permission is given to a person (or group) for a set number of years
and for tagging a maximum number of fish per year. The person who has the licence must be
present during tagging (but need not perform the operation him/herself). Premises and
people are inspected and each tag has to have a tag journal. Logbooks detailing tag type,
no. of fish, purpose of experiments, mortalities, when and where fish were released are kept
and reported yearly to the Inspectorate

Tagging that requires surgery (e.g. intra-peritoneal tags) is controlled by a similar
system, but obtaining a personal licence requires extra scientific/veterinary qualifications,
plus a training course for recent recruits to tagging.,

Very recently, interpretation of the law in Denmark has changed following
deliberations of a Commission. From 1st January 1998, permission will not be needed for
external tagging associated with identification and monitoring purposes. This ruling is
retroactive. However, strict legislation will still apply to invasive procedures.

Impact of tagging legislation: considerable, tightly controlled, but recently relaxed
for the bulk of tagging operations.

6.2.2.4 Finland

Current Finnish legislation dates from 1986 (Lahteensmaki, 1987) and is fairly
typical of recent law in European countries and stems from the European Council Directive
on the protection of vertebrates. It has the following features:

Licenses (issued by Provincial Administrative Boards) are required by establishments
carrying out experimental work on vertebrates.

Only those whose qualifications are recognised by the Ministry of Agriculture and
Forestry are permitted to carry out research.

Researchers have to produce research plans (which become public documents) to
obtain a project licence.

Procedures are classified (two classes); fish tagging would generally fall into the
second class, where permissions are more readily granted.

Impact of tagging legislation: In practice no licences are required for routine
tagging operations for monitoring populations. However, within the Finnish Game and
Fisheries Research Institute there is a standing committee on animal experimentation, which
controls most of the tagging carried out in the country. The committee is supervised by a
Provincial Administrative Board Committee which requires an application for all tagging
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activities except mass tagging methods like painting and fin-clipping. The aim is to ensure
that tagging operations are appropriate and carried out by competent personnel.

6.2.2.5 France

Legislation dates from 1987, but does not specifically address fish tagging. It has the
following provisions:

Invertebrates, embryos or vertebrates not suffering pain are not covered by
legislation.

Local or general anaesthesia is required for work on vertebrates that are liable to
suffer pain, except when the anaesthesia is more detrimental to the animal than the
experiment itself.

If anaesthesia is not used, the number of experiments must be minimised, and only
one procedure may be carried out on an individual animal.

Authorisation for experiments is provided by the Ministry of Agriculture. Permits are
given for 10 years, with automatic renewal if experiments continue.

Experimenters should be a veterinarian, medical doctor, pharmacist or qualified at
BSc, MSc or PhD level in the biological sciences, or have equivalent experience.

There is a wide range of procedure requirements, but these are applied flexibly to
different types of animals.

Experimenters must show evidence of having undertaken training courses in surgical
and prophylactic procedures.

6.2.2.6 Germany

Straightforward tagging for identification is not controlled by legislation. However, if
surgery is required, then permission for projects is required and operators need to have
suitable qualifications and training.

Impact of tagging legislation: considerable as far as procedures governing surgery
are concerned.

6.2.2.7 Greece

Greece has no laws governing vivisection; fish tagging is subject to no rules
whatsoever. However, government authorities expect workers to be guided by international
humanitarian practice. Effectively this is a self-regulatory regime.

Impact of tagging legislation: None.

6.2.2.8 Ireland

Ireland’s basic legal framework in this area is the 1876 Cruelty to Animals Act
(which was drafted when Ireland was part of the U.K.). This act issued licences to people to
carry out procedures provided they were suitably qualified. It has been updated by EU
legislation (Directive 86/609/EEC) and annual returns are required. Identificatory/external
tagging (‘routine husbandry’) is excluded from control.

Impact of tagging legislation: considerable as far as procedures governing surgery
are concerned.



102

6.2.2.9 Italy

From 1992 a law based on an EU Directive (86/609/CEE) was introduced:
The law governs ‘the protection of animals used for experimental aims or for other

scientific topics’, but this is primarily aimed at laboratory work upon laboratory-reared
mammals.

Experiments can only be done in authorised laboratories and require permissions
from the Italian Health Ministry and local authorities.

Experiments on wild animals are allowed, after specific request, only to a few
scientific institutes for study and research aims, but it is necessary to demonstrate a value to
conservation, and also that it is impossible to use animals reared in the laboratory.

Technically, therefore, tagging should involve legal control. In practice this is
ignored in the case of small, common fish (Fabi, pers. comm.) but is more likely to be taken
seriously in the case of tunas or other large pelagic fish.

Impact of tagging legislation: unclear at present - limited tagging is taking place in
Italy.

6.2.2.10 Netherlands

Not available

6.2.2.11 Norway/Iceland

Norway and Iceland have virtually the same legislation; the Norwegian one is
described:

The 1974 Animal Welfare Act (supplemented by the provisions of the EU Directive
86/609/CEE) applies to live mammals, birds, reptiles, amphibia, fish and crustaceans.

It applies generally to the public, and is not specifically aimed at controlling scientific
experimentation.

Animals must be treated well so that there is no risk of causing them unnecessary
suffering.

Inspection by police, animal welfare committees and official veterinarians may be
carried out at any time.

A person carrying out biological research must have a special licence, granted by a
committee.

From July 1998 researchers must attend mandatory 3-week courses, organised by
veterinary colleges.

No specific mention is made of fish tagging, and tagging operations are not subject to
reporting.

Iceland differs from Norway in the following ways:
An Animal Welfare act (1994) applies;
researchers do not need licences;
there is no requirement at present for training.

Impact of tagging legislation: in both countries there appears to be no impact of
legislation on recognised types of fish tagging.

6.2.2.12 Portugal

There is very limited general legislation in Portugal affecting fish tagging.

Impact of tagging legislation: negligible.
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6.2.2.13 Spain

There is very limited general legislation in Spain affecting fish tagging.

Impact of tagging legislation: negligible.

6.2.2.14 Sweden

The Swedish Animal Welfare Act (‘Djurskyddslag’, no. 1988/534) with a recent
amendment of 25 February 1998 (no. 1998/56) is now very similar to the EU-Directive
(86/609/EEC). Certain experiments are exempted: 1) experiments on invertebrates; 2)
minimal and simple operations; and 3) bird-ringing.

Tagging operations that involve surgical treatments are subject to the following
regulations:

Operators must be licensed, as must each experiment. The Ministry of Agriculture
controls licensing through an Ethics Committee (there are 6 committees within Sweden).

From 31 December 1994 operators must take part in 3-week courses which have a
fixed curriculum (including: laws & regulations governing animal experimentation; ethics;
biology and care of animals; familiarity with current types of experiment; alternatives to use
of animals).

Experimenters must be veterinarians, or have close links with veterinarians.
At the end of a procedure, a veterinarian shall decide whether slaughter is necessary

(and what humane method should be used).
All procedures have to be reported; reports have to be held for at least 3 years at the

place of experimentation; records must be open for inspection at any time.

Impact of tagging legislation: considerable, tightly controlled, requiring specific
permission. At the time of writing, attempts are being made to obtain exemptions. For
example, it is hoped that exemption will be granted for Carlin tagging performed to follow
the effects of Water Court decisions on salmonid smolt releases, and also for adipose fin
cutting of smolt reared for harvest purposes.

6.2.2.15 United Kingdom

The U.K. appears to have the most detailed legislative control of animal
experimentation (The Animals (Scientific Procedures) Act 1986) in the EU at present:

U.K. law applies to all non-human vertebrates, plus the common octopus; it is quite
likely that advanced crustaceans (e.g. crabs/lobsters), will be added to the list in the next few
years. As far as fish and amphibians are concerned, the law does not apply to larval stages -
the Act only applies when the animals can feed independently. Tagging larval fish by any
means (e.g. tagging by fluorescent dye, genetic tagging) is therefore outside legislative
control.

Experimentation requires site, personal and project licences, all of which must be
sought from the Home Office.

Establishments and programmes are subject to unannounced inspection at any time
by Home Office Inspectors.

Regional Home Office Inspectors (registered medical or veterinarian practitioners)
advise on projects, not only on the basis of the humane nature of experiments, but also on the
scientific validity of project plans. They are prepared to balance stress against the benefits of
a programme (cost:benefit analysis) but are equally prepared to turn down a programme they
perceive as trivial.

There are highly detailed descriptions of categories of experiments and specific
duties described for experimenters.
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Experimental procedures have to be reported annually in detailed returns to the Home
Office for national published statistics.

Tagging purely for identification, and which causes ‘only momentary pain or
distress’, or for ‘routine husbandry’ is not covered by legislation (i.e. it can be freely
undertaken). Tagging for forward stock assessment falls into this category. Tagging
conducted at sea outside the 12-mile limit of territorial waters is also deemed not to be
controlled by legislation.

Tagging carried out for ‘scientific reasons’ (as judged by a Home Office Inspector)
requires Personal and Project Licences. This means that most data storage tagging will
require anaesthesia, and will certainly do so if tags are implanted surgically.

Holders of licences have to possess appropriate scientific qualifications and new
holders now have to undertake training courses. These are expensive and largely aimed at
laboratory mammalian practice and the maintenance of proper animal houses, although there
are also modules dealing with fish or farm animals. None of the training specifically
addresses fish surgery or tagging procedures.

From 1st April 1999, each institution carrying out procedures under legislation will
be required to have an internal ethical review process in place to consider, advise and control
such procedures. This is in addition to existing external controls.

Impact of tagging legislation: considerable, tightly controlled.

6.2.2.16 U.S.A.

The USA is outside the remit of CATAG, but has state (rather than federal) laws
governing tagging that are similar to the more stringent ones obtaining in Europe. A
particular legal problem has surfaced recently - sport freshwater anglers are starting to
conduct informal tagging operations of their own. This illegal practice, which interferes
with legitimate fish management research, has the potential to spread throughout Europe.
Tagging guns and tags are now available cheaply through mail order catalogues and there are
already instances of game fishermen using tags in Denmark. This a grey area of law,
although in Iceland sports fishermen routinely (and legally) move and tag sea-ranched
salmon. Fin clipping is also quite common in Belgian freshwater systems.

6.2.3 Tagging of organisms other than fish

Tags are applied routinely to shellfish, marine mammals and turtles. De facto, bird-
ringing (including that applied to marine birds) is also a form of tagging. Broadly speaking,
shellfish tagging is not covered by legislation anywhere in Europe, though there are signs
that higher crustaceans (crabs, lobsters) may be incorporated into more rigorous legislation
(e.g. in the UK), and in principle crustaceans could be covered by Norwegian/Icelandic
legislation. Marine mammals are covered by the same legislation as that applied to fish (i.e.
with national differences) - a controversial area is the propriety of using hot-iron branding
for seal identification. Interesting there is little objection to freeze branding, although tissue
effects are indistinguishable (Feydak, personal communication).

The legal status of turtle-tagging and bird-ringing make an interesting comparison
with fish-tagging. Both activities are seen as almost entirely beneficial (despite increasing
evidence of high tag-loss rates in turtles), and it is common for nationals of one European
country to conduct ringing or tagging in another (relatively unusual in fish tagging, save in
large co-operative programmes). Generally turtle-tagging and bird-ringing are treated as
husbandry or monitoring practices not covered by vivisection legislation. However, they are
not outside legal control.
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Most European countries with nesting turtles require taggers to have permits from
relevant authorities (e.g. Department of the Environment in Cyprus - the only part of Europe
to have substantial populations of both green and loggerhead turtles), principally because all
sea turtle species are endangered, and therefore subject to international law (e.g. CITES).
However, there appears to be no distinction between tagging for identification purposes, and
the use of electronic tags, such as DSTs and satellite tags.

Bird-ringing is regulated, but generally by NGOs rather than government
departments. In most European countries it is illegal to catch (as opposed to shoot!) wild
birds, while many species (e.g. raptors) are protected by national legislation. Bird-ringers are
licensed, and the licensing procedure requires training, usually of considerable duration
before ringers may act independently. In the U.K. bird-ringers have to obtain licences from
the Joint Nature Conservation Council, but the licensing is delegated to the British
Ornithological Trust (another NGO.

Tagging of invertebrates (shellfish) is subject to no legal controls at present.

6.2.4 Tagging, the food chain and European law

Anaesthesia during tagging procedures has the potential for contaminating fish
tissues with chemical residues. If the fish are of fishable size and are released into the
environment after tagging, then there is a possibility that such residues might reach humans
via consumed fish. In addition it is feasible that materials used for prophylaxis (disinfectants,
antibiotics) could also contaminate fish. A separate issue concerns the release of chemically-
tagged fish into the environment, though so far this seems not to have been considered
because chemical tagging has been a mass tagging process applied to immature (and hence
unfishable) fish.

As far as anaesthesia is concerned, the USA Food & Drug Administration (FDA)
technically permits only one anaesthetic to be used on fish that are subsequently released
into the environment (MS222TM = tricaine, 3-amino benzoic acid ethyl ester
methanesulphonate). However, clove oil is also legal because the FDA recognizes it a
‘generally recognized as safe’ substance (GRAS) rather than an anaesthaesthetic. The FDA
also requires that fish are not released into the environment until 3 weeks have elapsed since
anaesthesia, though again clove oil-anaesthetised fish appear to be exempt. In the UK, the
Medicines (Restrictions on the Administration of Veterinary Medical Products) Regulations
1994 governs this area, and again only MS222 is permitted. However, in this case, the fish
only have to be held for 10 days before release (it is generally agreed that all residues have
disappeared from fish by around 24 hours after anaesthesia). The degree to which similar
legislation exists in other European countries is unclear. But at present there is no system of
enforcement or control, so it is important that scientists releasing fish after anaesthesia or
prophylaxis should behave in a responsible fashion (‘self-regulation’).

6.3 REQUIREMENTS AND RECOMMENDATIONS

DG VI, XII, XIV could be asked to examine the possibility that fish tagging should
be treated separately from experimentation on animals. At a minimum, it would help if a
consistent approach was adopted throughout Europe to tagging used for identification only
(in fisheries and aquaculture operations) - this is exactly analogous to identifying cattle or
pets by external tags/pit tags, and should not be subject to vivisection legislation. It is
should be noted that the evidence collected by CATAG has already led Denmark to
change its application of legislation in this fashion.

Fish tagging practitioners should all be required to undergo training. Current
legislation often requires experimentation licence holders to undergo generalised training in
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the legality of various procedures and holding techniques, but surgical procedures on fish are
very different from those used on terrestrial mammals.

All efforts should be made to avoid chemical residues associated with the tagging
process reaching the human food chain.
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108

7. FISH WELFARE AND HEALTH IN RELATION TO TAGGING

7.1 INTRODUCTION

All forms of fish tagging involve invasive procedures, first by capture itself.
Externally-fixed, or superficially-injected tags breach the skin and musculature, while
internal tags (whether mounted in the stomach or peritoneal cavity) normally involve either
force feeding or surgery (though some tags can be ingested voluntarily in food/bait). Use of
anaesthesia may itself alter body biochemistry (e.g. MS222 use causes elevated serum
cortisol levels in coho salmon; Strange & Schreck, 1978). All types of tags have the
potential to cause health problems for fish subsequent to the tagging process itself. There
may be disturbances of physiological function, or more subtle behavioural or immunological
effects.

7.2 ANAESTHESIA

7.2.1 Introduction

Rendering fish quiet (sedation) or unconscious (anaesthesia) is crucial to several
aspects of fish tagging. Summary sheets at the end of this section are intended to help
operators choose and use anaesthetics: they are also readily downloadable as OHP slides.
More information about anaesthesia may also be gained by interrogating the WELFARE
database. Operators should be aware that there are legislative implications of use of
anaesthetics on fish that are to be released to the wild because of the perceived risk of
chemical residues reaching humans through the food chain (see Section 6.2.4).

7.2.2 Anaesthesia

A variety of handling methods have been applied during the tagging process, ranging
from use of blindfolding in calming fish, to full anaesthesia involving continuous irrigation
of the gills with fresh or seawater containing diluted anaesthetic agents.

Under anaesthesia, handling stress will be reduced and tagging can be accomplished
more rapidly without risk of the fish hurting themselves when trying to escape. Although the
use of anaesthetics in some cases may be unwanted due to their detrimental effects on the
physiology and behaviour of the fish, considerations of animal welfare will in most cases
prohibit tag attachment to unsedated fish if surgery is involved.

7.2.3 Choice of anaesthetics

Different handling procedures demand different anaesthetic approaches. Light
anaesthesia (=sedation) is defined as ‘reduced activity and reactions to external stimuli’, and
is sufficient for procedures such as transport or weighing of fish. Full anaesthesia can be
defined as ‘loss of consciousness and reduced sensing of pain, loss of muscular tonus and
reflexes’ and is needed when surgical procedures are applied (McFarland, 1959).

The behavioural changes occurring in fish passing through sedation to full
anaesthesia were classified by McFarland (1959). There are 4 stages with subclasses ranging
from normal (stage 0), where the fish reacts to external stimuli and where the muscular tonus
and swimming ability is normal, to the stage of total physiological collapse (stage IV), where
gill movements have stopped and which in a few minutes will lead to heart failure. In a
tagging context, the stages where the fish is in a state of light/deep anaesthesia (stages II and
III) are of greatest relevance, as the animal is then insensitive to pain caused by the
attachment of transmitters or data storage tags.
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Choice of sedatives/anaesthetics must be based on the species to be tagged, the
number and size of fish involved, and the duration of the operation in question. Water
temperature and chemistry have also to be taken into consideration when choosing the
method. Lastly, the work often has to be done under primitive field conditions without
accurate control of concentrations and exposure times. An anaesthetic with a good safety
margin between effective anaesthesia and irrevocable collapse is essential in such
circumstances.

7.2.4 Categories of methods

(a) Physical sedation methods

Physical sedation can be obtained by rapid lowering of temperature or by electric
shock. The former method is mainly applicable for transportation (c.f. Ho & Vanstone,
1961). Coldwater adapted species, and marine fish require lower temperatures for sedation
than warm water species and freshwater fish (Chung, 1980). Water cooling can also be used
in conjunction with other anaesthetics (e.g. Benzocaine) but the dosage must then be reduced
by about 30% (cf. Ross & Ross, 1983). Electroanaesthesia has a number of advantages such
as rapid immobilisation of fish, no need for chemicals, rapid regain of consciousness and low
costs (Madden & Houston 1976, Gunstrom & Bethers 1985, Tytler & Hawkins 1981; Cowx
& Lamarque, 1990; Cowx, 1990). But these are outweighed by the fact that the method
cannot be used in saline water, and the danger of using inappropriate voltage levels, which
may give severe physiological stress responses in experimental fish (Shreck et al., 1976)
due to hypoxia. There are also significant risks to experimenters, principally from electric
shock. In the U.K. the National Rivers (NRA) issued a safety Code of Practice in 1995.

(b) Chemical sedation and anaesthesia

Chemical sedation is distributed to fish in liquid dilutions of varying strengths
depending on the agent used. The sedative is inhaled by the fish and diffuses across the gill
epithelia. In minor quantities it can also diffuse into the fish via the skin - this may be a
particularly significant route in scaleless fish with well-vascularised skins. Since these
chemicals are absorbed and excreted predominantly via the gills, fish with a large surface of
gill ephithelium for a given body weight (e.g. salmonids) require lower doses of anaesthetics
than fish (e.g. eels) with relatively smaller epithelial surfaces (Ross & Ross, 1983). Other
factors affecting the absorption and excretion of chemicals are the relationship between the
surface of the gill epithelium and the body volume, thickness of epithelium, type of
anaesthetic, dosage and temperature.

All known anaesthetics have unwanted side effects. Most of them are barbiturates,
which lead to unconsciousness, inhibition of the sensing of pain and loss of muscular tonus
and reflexes. The most important complication connected with all forms of chemical
anaesthesia is hypoxia due to reduced respiration and vascular activity. This leads to
physiological changes in the blood (e.g. lowered pH), hypotonia (= reduced blood pressure),
raised blood glucose, blood lactate and haematocrit (Tytler & Hawkins, 1981). In addition
to physiological deterioration of blood parameters, hypoxia can cause brain damage, which
interferes with directional orientation (Taylor, 1988), or alters temperature preferences
(Goddard et al., 1974).

Widely used anaesthetics of the barbiturate group are:

MS 222- Tricaine methane sulphonate
Chemical name: ethyl- amino- benzoatemethanesulphonate. MS 222 (trade name) is

probably the most widely used fish anaesthetic world-wide, and there are numerous studies
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on the physiological effects of this agent (e.g. review by Bell, 1987). It is a crystalline
powder easily dissolved in fresh and seawater. The recommended dosage for anaesthesia is
50- 100 mg/ l (Klontz 1964; Ferreira et al., 1979). It should be observed that MS222
becomes toxic in seawater exposed to sun (Bell, 1987). MS222 gives an acid solution and a
dosage of 75 mg l-1 can cause the pH to fall to 4.0 in soft water (Wedemeyer, 1970). This
effect can, however, be mediated by adding 5- 6 ml saturated (10%) solution of NaHCO3 to
1 litre of 100 mg l-1 solution of MS222.

Benzocaine

Chemical name: Ethyl-p-aminobenzoate. This chemical is also very widely used in
fish anaesthesia. It is chemically close to MS- 222, both being derivatives of p-
aminobenzoic acid. Benzocaine is a white crystalline powder, which is insoluble in water
and has to be dissolved in ethanol in a ‘master solution’ of 1 g l-1 96% alcohol. The master
solution should be stored in a dark bottle, and has a life of up to a year. The recommended
dosage is 2.5 ml of this master solution to 10 l of aerated water. With this dosage the
animals should be immobilised in 2 - 5 min. and the recovery time will be 5 - 15 min.
Benzocaine gives a neutral solution (Egidius, 1973). The time to obtain anaesthesia was
observed to take 1.5 min longer time for trout (Salmo trutta) and 3 min longer for pike (Esox
lucius) in 7°C water than at 12 °C (Dawson & Gilderhus, 1979). According to Wedemeyer
(1970) a comparison between Benzocaine and MS-222 as anaesthetics for salmonids was
slightly in favour of Benzocaine as less metabolic change was observed. More recent
studies by Soivio et al. (1977) showed few differences between the two; both caused
hyperglycaemia. However, benzocaine caused somewhat lesser hyperglycaemia than MS-
222. With the exception of occasional allergic reactions, health hazards to humans are not
normally recorded with the use of benzocaine (MND, 1986).

Chlorbutanol- Chlorbutol- Chorethone- Acetochloroform

Chemical name: Chlorbutanol. Although classified as a safe anaesthetic for fish
(Johansson, 1978), it has not been widely used outside Scandinavia due to health hazards to
humans connected with its use. Inhalation of larger quantities may cause unconsciousness, it
can also irritate human skin and eyes. Chlorbutanol (Cb) is a crystalline colourless powder
that has to be dissolved in ethanol. The usual base solution is 30 g to 100 ml 96% ethanol,
and the dose 10 ml base- solution to 10 litres aerated water. Johansson (1978) states that the
time for falling into stupor and wakening is inversely dependent to the water temperature,
the higher the temperature the lesser the time needed for sedation. The dosage varies
somewhat with the size and species of fish but is considered sufficient when the fish rolls on
it side after 3-5 min. Chlorbutanol gives a light anaesthesia, but it is normally sufficient
when the fish only needs to be handled for a short time handling, such as in tagging
(Johansson, 1978; Horsberg & Høy, 1989). Chlorbutanol is considered a safe anaesthetic for
fish, although a study by Hansen and Jonsson 1988 showed an 87 % reduction in return rates
of Atlantic salmon (Salmo salar) smolts anaesthetised before release in comparison with
untreated fish. Chlorbutanol has also been tested on Atlantic halibut (Hippoglossus
hippoglossus), but with a dosage of 50 ml base solution dissolved in 10 l water. The
smallest fish are most rapidly sedated; they also have the shortest recovery time.

Methomidate chloride

Methomidate is a hypnotic (sleeping-agent) and not a barbiturate. It therefore causes
less depression of respiration than MS-222 or Benzocaine. This may lead to fewer and less
serious side-effects. Methomidate is water-soluble. Mattson & Riple (1989) report an
effective concentration of 5 mg l-1. Methomidate was tested on rainbow trout in the early
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1980s by Gilderhus & Marking (1987), and showed in these tests to give a relatively long
wake-up time and also some mortality after treatment. However, during the late 1980s this
anaesthetic has been tested with good results for handling salmonids and other fish in
culture, such as cod and halibut at the Department of Aquaculture, Institute of Marine
Research, Norway, (Mattson & Riple, 1989; Huse, pers. Comm.; Furevik, pers. comm.).
From 1992 onwards methomidate has been the only anaesthetic used at the Dept. of
Aquaculture (Holm, pers. comm.); the only negative feature is the high cost of the product.

Quinaldine

Quinaldine is not easily soluble in water, and is also reported to be irritating to
human skin and mucus membranes. Quinaldine-sulphate does not have these negative
effects, but gives an acid solution, and must therefore be buffered with sodium bicarbonate
(Blasiola, 1977). It has been used in acetone solution for the capture of intertidal fish living
in rock pools. Reports that it may be carcinogenic currently restrict use.

Propanidide

In a 5% solution this chemical is water-soluble. Propanidide seems to have few
physiological side effects, and can be used both for short- and long-duration anaesthesia.
The main reported asset of this anaesthetic is that it does not reduce the ventilatory rate of
the fish (Ross & Ross, 1984). The blood-circulation can also remain unaffected as reported
by Veenstra et al. (1987) from studies of S. fontinalis embryos and 7 days old alevins of
amargosa pupfish (Cyprinodon nevadensis amargosae). It has also been tested on carp
(Jeney et al., 1986) rainbow trout and smolts of Atlantic salmon and sea trout (Siwicki,
1984) with good results.

Clove oil

Chemical name: eugenol (4-allyl-2-methoxy-phenol). Recent experiments (Anderson
et al., 1997) have shown that clove oil is just as effective an anaesthetic for both juvenile and
adult rainbow trout (Oncorhynchus mykiss) as MS-222. Munday & Wilson (1997) report
excellent results with clove oil on Pomatocentrus amboinensis and recommend its use in
preference to quinaldine. Clove oil does not affect swimming performance and it also
provides swift induction and recovery from anaesthesia. It is regarded as a GRAS
(‘generally recognised as safe’) substance by the US Federal Drugs Administration (FDA)
and is suitable for use in field studies where immediate release of the fish into the food chain
is required. Anderson et al. (1997) have shown that concentrations of 20-40 and 100-120
mg/l will induce light and heavy anaesthesia, respectively. At a concentration of 120 mg/l
induction times are significantly faster than MS-222 for both juveniles and adults. At a
concentration of 40 mg/l there is no difference for juveniles but induction times are
significantly faster for adults. Recovery times for adult fish are rather longer than MS-222
at the higher concentration but no different at the lower concentration.

7.2.5 Information sheets

Downloadable information sheets that will assist in the choice of anaesthetics for
specific purposes have been prepared; they are displayed in Appendix II (7.10) of this
chapter and are also available on the CATAG web site (http://www.hafro.is/catag).

7.3 EFFECTS OF CONVENTIONAL TAGS ON FISH

Consideration of conventional tagging (including procedures such as fin-clipping)
will be given here. Generally such tagging procedures are innocuous and there is little or no
stress to fish beyond that involved in capture and handling (e.g. chinook salmon,
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Oncorhynchus tshawytscha, Sharpe et al., 1998; see also Gjerde & Reftstie, 1988, Hansen,
1988). The main problem associated with tags is that of pathological lesions caused by
tagging or fin clipping (Roberts et al., 1973a, b, c; Morgan & Roberts, 1976), or indeed any
breach of fish skin. Such lesions may be subject to secondary infections and are likely to
cause effects on growth rate and reproductive performance. Uncontrolled infections may
well be a source of mortality, but it seems probable that this is very rare.

Adipose fin clipping (commonly performed on Pacific salmon) may be detrimental
because there is some evidence that these fins are secondary sexual characters, which
perform an important function in mate selection.

Most tagging experiments are based on the assumption that the behaviour, growth
and survival of tagged fish is similar to that in untagged fish and that data generated from
these studies is unaffected by the type of tag used or the tagging procedure implemented.
Few studies have been carried out to assess the impact of simple external tags on the
behaviour of fish (e.g. Lewis & Muntz, 1984; McFarlane & Beamish, 1990), probably
because they are difficult to design and carry out. Furthermore, tag effects are sometimes
examined under controlled laboratory experiments, which often provide conditions different
from the natural environment.

While many of the internal tags or marks may have minimal or negligible effect on
the behaviour of marked fishes (Buckley & Blankenship, 1990), external tags may affect the
behaviour of tagged fish. Small individuals may have problems with relatively large tags
and the application of the tag may cause problems, such as wounds around the attachment.
External tags may effect feeding or evasive behaviour and the fish may therefore be more
vulnerable to predation. Especially in demersal fish, tags may become overgrown with algae
and/or mussels, becoming heavier and more cumbersome. An external tag that has not been
anchored firmly into the muscle may continue to irritate the fish, preventing the wound from
healing causing a chronic wound.

Growth of sablefish, Anoplopoma fimbria, was found to be affected by the tag or
tagging procedure in a comparison of wild, tagged fish with untagged fish (McFarlane &
Beamish, 1990), using size at known age data. Thus, extrapolating growth information from
tagged fish resulted in altered estimates for mortality and mean age at maturity for this
species. On the other hand, no effect on growth was observed in similar studies with Arctic
char (Salvelinus alpinus) (Berg & Berg, 1990).

Carlin tagging and fin clippings are commonly used in studies on salmon or trout
migration, survival or growth. Saunders & Allen (1967) showed negative effects of this
tagging method on survival of Atlantic salmon, Salmo salar, implying that mortality
estimated from tagged salmon smolts would result in an underestimation of the survival rates
to adults. This was confirmed in later studies on the same species by Isaksson & Bergman
(1978) and Hansen (1988). The increased mortality was attributed to handling, anaesthesia
and marking of fish. Carlin tagging was found to have a higher impact on survival than fin
clipping, although the latter was not without impact, probably due to stress from handling
and anaesthesia. In a laboratory study on snapper (Pagrus auratus), no effect of dart tags on
survival or growth was observed on three length sizes of fish during a one-year period
(Quartaro & Kearney, 1996).

All tagging or marking of fish involves treatment, which disturbs the fish and may
stress or harm the fish. Careful handling procedures throughout the capture and marking
process are of highest importance. Physiological research has shown fish to be stressed for a
prolonged period after handling; for example, levels of lactic acid may be elevated for more
than 24 hours after stressing the fish at certain temperatures (Wendt 1965, 1967; Wendt &
Saunders, 1973). Histopathological studies on the effects of Disc-dangler tags on Atlantic
salmon (Morgan & Roberts, 1976) revealed that external tags of these types can leave severe
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traumatic wounds which may lead to secondary infection. The incomplete healing of the
integument during the life of the fish may affect the normal behaviour of the fish and result
in biased estimates of biological parameters.

A possible (and virtually unstudied) effect of all types of external tagging (whether
conventional or with electronic tags) is that tags may become fouled, causing enhanced drag,
so disadvantaging the fish. Anecdotal evidence has been collected during CATAG of the
existence of such fouling (e.g. by barnacles and seaweed) but more investigation is needed.
In particular, it would be desirable if systematic fouling trials could be conducted on tags and
tag materials - it is quite possible that fouling could be a source of unremarked mortality of
tagged fish.

7.4 EFFECTS OF ELECTRONIC TAGS ON FISH

7.4.1 Introduction

Electronic tags have become commonly used during the last decade to monitor
movements, activity, physiological responses and reaction to a number of environmental
variables in many fish species in natural environments (review in Lucas & Baras, 2000) as
well as in aquaculture environments (Baras & Lagardère, 1995). The area of electronic tags
is in rapid development, and since the start of fish telemetry (see Malinin & Svirskii, 1972;
Stasko, 1975, for a historical perspective) these tags are used by an increasing number of
teams and researchers, in an increasing number of species, most of which have never been
tagged before (Baras, 1991; Priede & Swift, 1992; Baras & Philippart, 1996; Lagardère et
al., 1998; Moore & Russell, 2000). Implicit in these studies is the usual assumption that the
tag and the tagging procedures have no significant effect on the data collected. Whereas
some authors found no difference between tagged and untagged fish in terms of behaviour,
growth or physiology (e.g. Hinch et al., 1996), other studies have documented adverse
effects that are dealt with here. Furthermore, only a very small proportion of tagging studies
have investigated the actual adverse effects of tagging, and effects on behaviour or
physiology have been investigated far less frequently than direct, 'obvious' effects on
survival, anatomy or pathology (see Figure 7.1).

A future goal should be to ensure that the effect of the tag and the tagging procedures
on the animals used in any project are studied before this type of assumption can be made

Figure 7.1. Proportion of tagging feasibility studies where the effects of tags or tagging procedure on anatomy,
pathology, growth, behaviour and physiology were investigated.
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with confidence. Furthermore, because electronic tags and tagging techniques are
developing rapidly, the need to document modifications of behaviour from newly developed
techniques needs to be emphasised. This should be done, not only to secure the welfare of
the animals, but also to avoid biased data collection due to decreased performance, altered
behaviour or elevated stress level in the fish.

The present review focuses on the effects on fish of tagging and carrying electronic
tags. Because of their larger size and mass, telemetry (radio and acoustic) and data storage
tags (DST or archival tags) are considered separately from other electronic tags, such as
passive integrated transponder (PIT) tags, and from conventional tags (see Section 7.3). The
main results from studies dealing with the effects of radio and ultrasonic transmitters in fish
are summarised in Appendix I (7.9) of this chapter. Additional, more detailed information
can be found in the WELFARE database on the CATAG web site (http://www.hafro.is/
catag).

7.4.2 Survival

For ethical considerations, cost effective research and reliable statistical analyses, it is
crucial that fish survive the tagging procedure and that neither the tag nor the tagging
procedure influence the survival rate of the fish, either during the time of the study or later.
Survival rates evaluated in telemetry or DST tagging studies ranged from 20 % one month
after tagging (grass carp Ctenopharyngodon idella, Schramm & Black, 1984) to 100 % 30
months after tagging (blue tilapia Oreochromis aurens, Thoreau & Baras, 1997), both
derived from captive studies. Because of differences between the procedures used by
different authors (e.g. threads for attachment, coating, tag size, anaesthetics, temperature)
and because not all factors likely to influence mortality are systematically investigated, or
mentioned in feasibility or field studies, it may be difficult to draw general trends. Different
fish species or life history stages may also have different resistances to handling or
pathological outbreaks. However, the analysis of the CATAG fish WELFARE data base
provides evidence that gastrically-inserted transmitters are less prone to cause the death of
fish, compared with externally- attached or intraperitoneally-inserted transmitters (Figure
7.2). Surgical procedures are often deemed to be the most invasive ones, since they require
deep anaesthesia, longer handling, opening of the body cavity and insertion of a foreign body
inside the fish. But carefully evaluated procedures tailored to the species of interest are

Figure 7.2. Proportion of telemetry studies reporting variable rates (0%, <20%, 20%) of fish mortality
depending on attachment procedure.
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frequently reported to cause no additional mortality compared with controls.
Mortality of internally-tagged fish takes place most frequently within the hours, days

or weeks following tagging, as a result of wound infection, blockage of gut transit or damage
to internal organs. Wood et al. (1983) reported that 40 % of tagged rainbow trout
Oncorhynchus mykiss died within 12 hours following 6 min of intensive exercise, probably
because of acidosis. Similarly, most cases of mortality of surgically-implanted fish took
place before the fish had healed their incisions and recovered physical integrity and osmotic
balance (within 4 days to 7 weeks, depending on species and ambient temperature). In
contrast, deaths of externally-tagged fish rarely take place within the first days or weeks.
External tag attachment involves progressive, or chronic lesions to muscular tissues, in
which degenerative processes exceed by far the capacity for tissue repair (Roberts et al.,
1973; Birtles et al., 1995; Knights & Lasee, 1996). Adverse effects thus accumulate over
time and can be exacerbated by exposure to increased water velocity, which increases the
drag on the tag. These problems can, however, be postponed depending on the time interval
between the moment of tagging and the time of the year when the fish moves into a faster
flowing environment. Externally-attached tags or trailing antennas may become entangled in
vegetation (e.g. Chinook salmon, Oncorhynchus tshawytscha Adams et al., 1998). This can
cause tag shedding or fish mortality.

7.4.3 Retention

Tag shedding or expulsion has been reported for all three major attachment
procedures (externally-attached, intragastrically-inserted, intraperitoneally-inserted), as well
as for oviduct insertion, which has recently been evaluated in salmonids (Peake et al., 1997).
Generally, shedding has been reported more frequently, and shedding rates found to be
higher for gastrically-inserted tags than for external or intraperitoneal tags (Figure 7.3), and
this contrasts with the mortality rates inherent in these three procedures. This section will
concentrate on shedding or expulsion mechanisms, and conditions that increase the
propensity of fish to shed tags. Details on tag shedding rates in different species or life
stages can be found in the WELFARE data base.

Figure 7.3. Proportion of telemetry studies reporting variable rates (0%, <20%, 20%) of tag shedding depending on
attachment procedure.
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Table 7.1. Fish species with high and low potential for retaining gastrically-inserted transmitters. (after Nielsen, 1992;
adapted from Stasko & Pincock, 1977, and others).

Regurgitation unlikely Regurgitation likely
Alosa sapidissima (American shad) Catostomus commersonni (white sucker)
Anguilla rostrata (American eel) Esox lucius (northern pike)
Ictalurus nebulosus (brown bullhead) Gadus morhua (Atlantic cod)

Morone chrysops (white bass) Katsuwonus pelamis (skipjack tuna)
Morone saxatilis (striped bass) Oncorhynchus kisutch (coho salmon)

Oncorhynchus gorbuscha (pink salmon) Oncorhynchus mykiss (rainbow trout)
Oncorhynchus keta (chum salmon) Perca flavescens (yellow perch)
Oncorhynchus nerka (sockeye salmon) Salmo salar (Atlantic salmon)

Oncorhynchus tshawytscha (Chinook salmon) Salmo trutta (brown trout)
Salvelinus namaycush (lake trout) Stizostedion canadense (sauger)

Thunnus thynuus (bluefin tuna)

a) Shedding of externally-attached tags

Externally-attached transmitters can be programmed to be shed by fish on purpose,
by using absorbable attachment threads such as catgut, or by use of pop-up technology
(Block et al., 1998; Lutcavage et al., 1999). Tags fixed by non-absorbable threads are
supposed to remain attached to the body of the fish, but shedding has been frequently
reported (Figure 7.3), as exemplified by tags attached at the base of the anal fin of yellowtail,
Seriola quinqueriadata, that were shed on average 8 days after tagging (Ichihara et al.,
1972), or by tags attached dorso-laterally to lake whitefish, Coregonus clupeaformis (Bégout
et al., 1998). The main causes invoked were untied knots (e.g. barbel, Barbus barbus, Baras,
1992; dace, Leuciscus leuciscus, Beaumont et al., 1996) or deep cuts in the dorsal
musculature caused by attachment wires (e.g. lake whitefish, Bégout et al., 1998) as a result
of drag. The use of cyanoacrylate adhesive at the time of tagging can secure knots.
Attachment plates frequently used in side-saddle harnesses reduce the extent of cuts and
subsequent shedding rates (e.g. < 5 % after three months in yellow perch, Perca flavescens
and < 5 % after 37 d in black bass, Micropterus salmoides; Ross & McCormick, 1981; 0 %
after 45 days in white perch, Morone americana and rainbow trout, Oncorhynchus mykiss,
Mellas & Haynes, 1985). However, harnesses may cause erosion of scales and muscles in
the long run, and eventually promote microbial infection and death of tagged fish. Similarly,
more secure knots may untie later, and possibly at different times, and thus cause the fish to
drag the tag at the extremity of the attachment wire (Beaumont et al., 1996). This almost
certainly modifies fish behaviour. Feasibility studies with externally-attached transmitters
have rarely lasted more than 90 days, and it is thus uncertain whether tags may be retained
for long periods, especially for side-saddle harnesses, which may strongly interfere with
growth, and cause deep cuts to the fish musculature.

(b) Regurgitation and egestion of gastrically-inserted tags

Transmitters in bait, that are voluntarily ingested by fish, have never been reported to
damage the digestive tract of the fish (Armstrong et al., 1992), whereas damage to the
oesophagus was observed when transmitters were inserted with a plunger (McCleave &
Horrall, 1970; Solomon & Storeton-West, 1983). Stomach-inserted or ingested transmitters
may be lost through regurgitation (vomiting) or egestion (defecation). Regurgitation rates
and delays between ingestion (or insertion) and regurgitation vary greatly, depending on the
fish species and the relative size of the tag (Moser et al., 1990; Nielsen, 1992).
Regurgitation rates generally increase as relative tag size increases (Nielsen, 1992). Small
tags, in contrast, may be lost through egestion (Baras, 1992). Some species are known to
regurgitate transmitters more frequently than others (Table 7.1). Recently, Marmulla &
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Ingendahl (1996) suggested that the mode of capture influenced the propensity of salmonids
to regurgitate tags: sea trout captured with electric fishing in rivers regurgitated sooner and
more frequently than those captured by netting.

(c) Expulsion of surgically-implanted transmitters

By contrast with terrestrial vertebrates, fish maintain near-neutral buoyancy. They
have not developed their abdominal region to cope with gravity effects like these induced by
negatively-buoyant transmitters or tags, and this may account for the relatively frequent
expulsion of implants by fish. Early implant exit may take place through the incision before
healing is completed and is generally a consequence of loose suturing. Implants may be
expelled later, either through the incision, through an intact part of the body wall, or through
the intestine (channel catfish, Ictalurus punctatus, Summerfelt & Mosier, 1984; rainbow
trout, Oncorhynchus mykiss, Lucas, 1989; Atlantic salmon smolts, Salmo salar, Moore et al.,
1990; vundu catfish, Heterobranchus longifilis, Baras & Westerloppe, 1999). All three
modes of exit share a common mechanism, which consists of the encapsulation of the
implanted tag by proliferating granulation tissue consisting of collagen and myofibroblasts
(Marty & Summerfelt, 1986, 1990). The contraction of myofibroblasts adds to the gravity
pressure exerted by the transmitter over the fish tissue, and forces the implant through the
route of least resistance. During the transintestinal expulsion process, the implant capsule
adheres to at least two points of the intestinal peritoneum, as well as to the parietal
peritoneum. The resulting rigidity interferes with the movements of the intestine during
digestion and causes the dislocation of the muscular layer of the pyloric intestine, allowing
the implant to pass into the lumen of the intestine and thence to be transported by reflex
peristalsis to the anus.

Encapsulation is a classical body reaction and has been observed with all coatings
assayed to date, and this suggests that the expulsion process is not specific to coating (Baras
et al., in press). Further, no anal or body wall exit was observed in some species like blue
tilapias (Oreochromis aurens) which encapsulated implants almost systematically (Thoreau
& Baras, 1997). It is worth emphasising that not all fish species encapsulate tags, and the
propensity for expulsion is thus species-dependent, especially for transintestinal expulsion,
which seems specific to siluriform species (channel catfish, Ictalurus punctatus, Marty &
Summerfelt, 1986; vundu catfish, Heterobranchus longifilis, Baras & Westerloppe, 1999).
Factors that promote the expulsion of implanted tags include the position of the tag and tag:
fish size ratios. Positioning the implant far from the incision, either through a plunger or
using a shielded needle technique, minimises the risk of pressure over this weakened tissues
and promotes long term retention of the implant (Ross & Kleiner, 1982; Baras &
Westerloppe, 1999). Incidence of rejection of transmitters through the body wall, or incision
site, seems to increase with transmitter size (channel catfish, Ictalurus punctatus,
Summerfelt & Mosier, 1984; Chisholm & Hubert, 1985; Marty & Summerfelt, 1986;
rainbow trout, Oncorhynchus mykiss, Chisholm & Hubert, 1985). Large transmitters are,
however, less likely to enter the intestine and be expelled by peristalsis (Lucas, 1989; Baras
& Westerloppe, 1999). Bleeding during surgery favours the formation of clots and
adhesions (Rosin, 1985) which are involved in the encapsulation and expulsion processes.
Similarly, factors that promote the invasion of the body cavity by microbial organisms, such
as external whip antennas of radio transmitters, or permanent suture materials, also increase
the risk of expulsion (Baras et al., in press). In this respect, braided suture filaments were
recently shown to cause more frequent transintestinal expulsion in vundu catfish,
Heterobranchus unifilis, than monofilaments (Baras & Westerloppe, 1999), essentially
because the former provide a larger surface for the settlement of micro-organisms than the
latter. Prophylaxis and use of antibiotics may thus be extremely advantageous to minimise
or prevent tag expulsion.
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Although transmitter loss is undesirable scientifically, it should be noted that
transmitter expulsion does not necessarily lead to subsequent mortality or morbidity (channel
catfish, Ictalurus punctatus, Marty & Summerfelt, 1986; rainbow trout, Oncorhynchus
mykiss, Lucas, 1989; Atlantic salmon smolts, Salmo salar, Moore et al., 1990; vundu catfish,
Heterobranchus longifilis, Baras & Westerloppe, 1999).

7.4.4 Infections and wounds

Fish with externally-attached and surgically-implanted transmitters may have
infections and wounds at the attachment points and the incision (e. g. yellow perch, Perca
flavescens, Ross & McCormick, 1981; white perch, Morone americana, Mellas & Haynes,
1985; barbel, Barbus barbus, Baras, 1992; bluegill, Lepomis macrochirus, Knights & Lasee
1996; European eel, Anguilla anguilla, Baras & Jeandrain, 1998). In freshwater, especially
at higher temperatures, fungus infection may be a problem, especially for salmonids
(rainbow trout, Oncorhynchus mykiss, Lucas, 1989; Kaseloo et al., 1992; Chinook salmon,
Oncorhynchus tshawytscha, Adams et al., 1998), but these infections are not specific to
external wounds, since they were also observed in salmonids with gastrically-inserted
transmitters, possibly as a consequence of handling (Solomon & Storeton-West, 1983).
Infections are enhanced by the presence of permanent transcutaneous bodies (Roberts et al.,
1973) such as the threads of externally-attached transmitters, permanent suture material or
externally trailing antennas of radio tags. Similar problems are also encountered frequently
for gastrically-inserted transmitters with trailing antennas that cause abrasion of the mouth
corner (e.g. Chinook salmon, Oncorhynchus tshawytscha, Martinelli et al., 1998). Threads
of external transmitters or heavy tags, as well as suture materials, can also cause deep cuts
into the muscles and skin (yellowtail Seriola quinqueradiata Ichihara et al., 1972; barbel,
Barbus barbus, Baras, 1992; lake whitefish, Coregonus clupeaformis, Bégout et al., 1998).
These cuts promote further infection of the fish by microbial organisms (bluegill, Lepomis
macrochiris, Knights & Lasee, 1996), or cause the tissue to become necrotic and prevent
normal healing (rainbow trout, Oncorhynchus mykiss, Kaseloo et al., 1992; bluegill, Lepomis
macrochiris, Knights & Lasee, 1996; European eel, Anguilla anguilla, Baras & Jeandrain,
1998). Fast flowing environments, which increase the drag of externally-attached tags, can
cause abrasion of the skin beneath the tag, or the foam pad on the side of the fish. These
abrasions can eventually cause microbial invasion (white sucker, Catostomus commersoni,
Lonsdale & Baxter, 1968; yellow perch, Perca flavescens, Ross & McCormick, 1981; hybrid
bass Yeager, 1982; barbel, Barbus barbus, Baras, 1992; sea bass, Dicentrarchus labrax,
Claireaux & Lefrançois, 1998). The severity of wounds is often worse in cryptic or highly
structured environments, in which externally-attached tags can become entangled in
surrounding vegetation, or torn by rocky substrata (yellow perch, Perca flavescens, Ross &
McCormick, 1981; Atlantic salmon, Salmo salar smolts, Nettles & Gloss, 1987; Chinook
salmon, Oncorhynchus tshawytscha, Adams et al., 1998).

Internally positioned transmitters can cause wounds too, either during inserting, or
later, as a result of movements of the tag inside the fish. Plungers used to insert intragastric
tags may damage the stomach or the oesophagus (cutthroat trout, Oncorhynchus clarki,
McCleave & Horrall, 1970; sea trout, Salmo trutta, Solomon & Storeton-West, 1983).
Scalpels may puncture viscera or ovaries, especially when making incisions laterally to the
midventral line (grass carp, Ctenopharyngodon idella, Schramm & Black, 1984; Baras et al.,
in press). Surgically-implanted transmitters may move inside the body cavity and cause
various types of damage such as alterations to gonads (Chamberlain, 1979), internal
haemorrhages (rock bass, Ambloplites rupestris, Bidgood, 1980; carp, Cyprinus carpio, Otis
& Weber, 1982; Mortensen, 1990), bruised livers or erosion of the rectum (grass carp,
Ctenopharyngodon idella, Schramm & Black, 1984), necrosis of the pelvic girdle (bluegill,
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Lepomis macrochirus, Prince & Maughan, 1978) or rupture of the body wall or intestine
prior to expulsion (channel catfish, Ictalurus punctatus, Marty & Summerfelt, 1986; rainbow
trout, Oncorhynchus mykiss, Lucas, 1989; vundu catfish, Heterobranchus longifilis, Baras &
Westerloppe, 1999). Attempts have been made to suture implanted transmitters to the body
wall in order to prevent movement inside the body cavity and consequent damage to viscera.
However, these attempts have produced highly variable results depending on species.
Petersen & Andersen (1985) succeeded while tagging Atlantic cod, Gadus morhua, whereas
transmitters sutured to the body wall of channel catfish Ictalurus punctatus were almost
systematically expelled (Marty & Summerfelt, 1986).

Most damage can be prevented, or alleviated, by tailoring the attachment procedure
to the species of interest and prevailing environmental conditions. Adjustments include tag
size, shape, length and coating, tag positioning, attachment threads (external tags), incision
site and closing material (intraperitoneal tags), and use of appropriate prophylactic measures
(see Summerfelt & Smith, 1990; Baras et al., in press).

7.4.5 Effects on growth and feeding

Depressed growth rate, or weight loss of fish has been observed frequently after
tagging, but with variable extent and duration, depending on fish species, life stage and
attachment procedure. Growth is an integrating variable of fish physiology and behaviour,
and impaired growth may thus be the consequence of habitat change, depressed mobility or
competitive ability, difficulties in recovering buoyancy, change of social status, increased
energy expenditures or reduced appetite.

The degree of stomach fullness is a well-known factor that regulates the appetite of
fishes. Feeding can be terminated by a full stomach (Toates, 1981) and gastrically-inserted
tags may induce similar reactions. The problem does not arise with adult salmonids and
other species that do not feed during spawning migrations. Tags affect food intake in
proportion to the tag:fish weight ratio, although it seems likely that this effect is governed by
the relative volumes of tag and stomach. Moser et al. (1990) observed that tag ratios less
than 4.5 % did not affect feeding and growth of juvenile coho salmon, Oncorhynchus kisutch
whereas higher ratios (4.5-14.5 %) reduced the feeding rate. Similarly, Armstrong and
Rawlings (1993) reported that Atlantic salmon (Salmo salar) parr did not feed after the
insertion of transmitters into their stomachs. Adams et al. (1998) and Martinelli et al. (1998)
observed that gastrically-inserted transmitters averaging 4 and 6% of the body weight of
juvenile Chinook salmon, Oncorhynchus tshawytscha, impaired their growth over longer
periods than tags inserted into the peritoneum. However, not all species seem to be affected
in the same way, since the food intake of Atlantic cod, Gadus morhua, is not modified after
gastric-insertion of transmitters. Whether abrasion of the corner of the mouth, which is
frequently observed in fish tagged with transmitters involving the external antenna trailing
from the mouth (e.g. Chinook salmon, Oncorhynchus tshawytscha, Martinelli et al., 1998),
affects the feeding rate or growth of the fish, is uncertain.

No long term effects on feeding and growth have been found in studies with
surgically-implanted transmitters in muskellunge (Esox masquinongy; Crossman, 1977),
channel catfish (Ictalurus punctatus; Summerfelt & Mosier, 1984), Colorado squawfish
(Ptychocheilus lucius; Tyus, 1988), razorback sucker (Xyrauchen texanus; Tyus, 1988),
juvenile Atlantic salmon (Moore et al., 1990) and rainbow trout (Lucas, 1989; Martin et al.,
1995). However, studies where growth was investigated at shorter time intervals provided
evidence that the growth of surgically-tagged barbel (Barbus barbus, Baras, 1992), vundu
catfish (Heterobranchus longifilis, Baras & Westerloppe, 1999) or blue tilapia (Oreochromis
aureus; Thoreau & Baras, 1997) was impaired over the first few post-tagging days, but was
then compensated for by higher than normal growth rates. Growth rate returned to normal
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again when the surgical incisions had healed. Factors invoked included partly excessive tag
ratios that restricted access to food resources, or feeding subordinated to untagged
individuals that appeared dominant at feeding time (bluegill Lepomis macrochirus, Knights
& Lasee, 1996). During the transintestinal expulsion process in catfishes, tags may also
cause a transient blockage of food, of which the duration is uncertain, but is apparently long
enough to depress the growth of the fish.

The effects of external tags on feeding and growth rate have also been investigated,
but essentially during short or mid-term feasibility studies. No effects were found in yellow
perch (Perca flavescens; Ross & McCormick, 1981), dace (Leuciscus leuciscus; Beaumont
et al., 1996) or lake whitefish (Coregonus clupeaformis; Bégout-Anras et al., 1998), whereas
externally-tagged largemouth bass (Micropterus salmoides) showed lower predation rates on
minnows (Ross & McCormick, 1981), and barbel (Barbus barbus) carrying external dummy
tags lost weight over several weeks after tagging (Baras, 1992). Similarly, the feeding rates
and growth in parr of Atlantic salmon (Salmo salar) was affected by external tagging, and
growth impairment was proportional to the tag ratio (Greenstreet & Morgan, 1989). In
contrast to intraperitoneally-implanted transmitters, the effects of external tags on growth
and feeding may be progressive and increase in the long run, essentially because of
permanent wounds, and generally deeper cuts to the musculature as time goes by. Side-
saddle harnesses are also deemed to interfere mechanically with the growth of the fish but no
study has evaluated this problem over long periods.

7.4.6 Effects of tags on behaviour

The effects of tags and tagging procedure on fish behaviour or physiology have been
relatively poorly documented, essentially because these aspects have rarely been investigated
during feasibility studies (see Figure 7.1). Reasons for this include the difficulty of
measuring physiological variables accurately in live fish without causing additional
interference, and the discrepancy between experimental environments used in feasibility
studies and wild environments. Furthermore, changes in behaviour can be more discrete and
last for shorter periods of time, and thus be far less obvious to detect than mortality, tag
shedding or reduced growth.

(a) Buoyancy and posture

With few exceptions (e.g. tunas or catfishes), teleost fish maintain reduced body
density by adjusting the volume of their swim bladder. Many fish with swim bladders are
negatively buoyant over much of the water column, only approaching neutral buoyancy at
the top of their vertical range (Blaxter & Tytler, 1978; Harden Jones & Scholes, 1985;
Arnold & Greer Walker, 1992). The swim bladder is said to have a volume of about 5 % of
fish volume in marine fishes, and about 7 % in freshwater fishes, though these are theoretical
values and real data are much more variable. More importantly, the swim bladder has an
adjustment capacity of about 25 % (Alexander, 1966; Bone & Marshall 1982). This
adjustment capacity permits the fish to cope with increased mass, such as that caused by
negatively-buoyant eggs or tags. Physostomatous fish such as salmonids or anguillids
possess a connection between the swim bladder and the gut, and can refill their swim bladder
by swallowing air. The connection is absent in the vast majority of teleosts (physoclistous
fish), in which gas exchange takes place via the rete mirabile (Bone & Marshall, 1982).

This anatomical difference implies that physostomes can regain near-neutral
buoyancy more rapidly than physoclists after attachment of a negatively-buoyant transmitter
or DST, provided they can access the surface (e.g. Atlantic salmon, Salmo salar, Fried et al.,
1976). Physoclistous percids remain on the bottom until sufficient gas is secreted, whereas
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cichlids or centrarchids like the bluegill (Lepomis macrochirus) increase their fin beat
frequency to create the upward force necessary to reach shallow depths where they can
achieve neutral buoyancy (Gallepp & Magnuson, 1972). Similarly, blue tilapia Oreochromis
aureus take about 72 hours to compensate for the negative buoyancy and slight postural
disequilibrium caused by implantation of a transmitter which adds 0.9 % to their body mass
(Thoreau & Baras, 1997). Swimming compensation may also take place in physostomatous
fish denied access to the surface (Fried et al., 1976), and in negatively-buoyant fish like
scombrids or thunnids, which swim continuously to avoid sinking and for which adding
weight implies faster swimming.

Tagging thus imposes temporary or permanent constraints on fish bioenergetics, of
which the energetic cost has rarely been quantified, but is presumably directly proportional
to the tag:fish weight ratio. This accounts partly for the observation that most fish carrying
tags representing more than 1.75-2.00 % of their body weight in water show deviant
behaviour subsequent to tagging, whereas minimal or zero effects are observed for lower
ratios (e.g. McCleave & Stred, 1975; Greenstreet & Morgan, 1989; Moser et al., 1990;
Kaseloo et al., 1992; Voegeli et al., 1998). More adverse effects of capture and release
procedures can theoretically take place when fish are captured in deep water and transported
to the surface for tagging, as this rapid change of depth can damage the swim bladder (see
Chapter 5).

(b) Swimming performance and energetic expense

As mentioned earlier, negative buoyancy induced by tagging may cause the fish to
increase its fin beat frequency to compensate for added mass, regardless of the attachment
procedure. However, additional specific adverse effects may originate from the procedure
itself. Externally-attached tags are usually positioned further from the centre of gravity of the
fish than internally positioned tags. Because of this they are more prone to cause permanent
or temporary postural disequilibrium and irregular swimming (e.g. Atlantic salmon Salmo
salar, Thorpe et al., 1981; largemouth bass Micropterus salmoides, Mellas & Haynes, 1985;
dace Leuciscus leuciscus, Beaumont et al., 1996). Drag resistance of externally-attached
tags varies depending on transmitter bulk and shape.

Swimming performance may be affected by the presence of a transmitter, which is
especially important to consider when dealing with migratory species, such as salmonids,
and active pelagic species, such as scombroids. Drag resistance of externally-attached
transmitters is the most obvious cause of reduced swimming capacity, but large internal
transmitters may inhibit swimming movements, reducing available power. Other effects of
transmitters that reduce the health of the fish and/or increase the energy demand, will also
combine to affect swimming performance.

Externally-tagged rainbow trout have been shown to exhibit lower exhaustion times
than other tagged groups or control fish (Mellas & Haynes, 1985). In another study of
rainbow trout, two types of externally-attached transmitters raised both tail beat frequency
(TBF) and opercular beat rate (OBR), but a transmitter consisting of two packages mounted
symmetrically on either side of the body affected TBF and OBR least (Lewis & Muntz,
1984). In a study of Atlantic salmon smolts, critical swimming speeds were lower in fish
with external transmitters (McCleave & Stred, 1975). Drag measurements of external
transmitters in a flume indicated that the extra power output required for tagged plaice
(Pleuronectes platessa) and cod (Gadus morhua) to maintain the same steady speed as
untagged fish was between 3 and 5 %, which in this study was considered negligible (Arnold
& Holford, 1978). In a field study of adult chinook salmon (Oncorhynchus tshawytscha),
upstream migration in a river was successful in externally-tagged fish, which migrated at the
same speed as control fish. In contrast, most of the fish with surgically-implanted
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transmitters were not able to pass a dam, and eventually migrated downstream (Haynes &
Gray, 1979). No effects of the transmitters on swimming performance were detected in
swimming tests of juvenile Atlantic salmon with surgically-implanted transmitters, white
perch (Morone americana) with surgically-implanted, externally-attached and gastrically-
inserted transmitters, and rainbow trout (Oncorhynchus mykiss) with surgically-implanted
and stomach-inserted transmitters (Mellas & Haynes 1985; Moore et al., 1990).

Studies dealing with swimming performance of tagged fish demonstrate that the
effects vary considerably. Swimming performance seems least affected when transmitter
size and volume are as small as possible in proportion to fish size (e. g. McCleave & Stred,
1975).

(c) Effect on social behaviour and interactions between species

The effect of tagging or tag presence on predation risk has rarely been investigated in
feasibility or field studies. Because of the difficulty in recovering neutral buoyancy, or
because of reduced swimming capacities, fish tagged with electronic tags may be more
vulnerable to predation than untagged fish (Jolley & Irby, 1979; Ross & McCormick, 1981;
Eiler, 1990). External tags may also make tagged fish more easily detected by predators, and
it is thus recommended that external transmitters are camouflaged to reduce their visibility
(Ross & McCormick, 1981). Similarly, handling or tagging procedures may affect the social
status of the fish. Surgically-tagged Guadeloupe bass (Micropterus treculi) showed less
social tendencies than untagged fish (Manns & Whiteside, 1979; Manns, 1981), and
externally-tagged yellowtail (Seriola quinqueradiata) showed depressed social behaviour
over the first hour after tagging (Ichihara et al., 1972). In other circumstances, tagging did
not modify shoaling or schooling (e.g. Baras, 1997). With respect to species exhibiting
territorial behaviour or social hierarchy, occasional changes of social status were observed in
rainbow trout (Oncorhynchus mykiss) carrying tags in their stomach (Mellas & Haynes,
1985), whereas surgery was not enough to cause reversal of a well established hierarchy,
either in brown trout (Salmo trutta; Baras et al., in prep.) or rainbow trout (Oncorhynchus
mykiss, Swanberg & Geist, 1997). However, similar status changes were also seen in fish
that had only been handled, suggesting that this adverse effect did not originate from
tagging, but from the capture and handling procedure (Baras et al., in prep.). It is strongly
suggested that such adverse effects on fish behaviour must also be considered when tagging
fish with conventional tags or PIT tags.

Considering the various adverse effects of tagging and their dynamics, the risk of
predation or change of social status is highest during the post-tagging hours or days for all
attachment procedures, then vanishes when wounds have healed. Exceptions to this rule of
thumb are mainly concerned with external transmitters, for which adverse effects can
cumulate over time. This applies particularly to spawning behaviour, and it is generally
recommended that fish are not tagged during the reproductive period (Winter, 1996). Fish
are deemed to be more delicate at this time (Økland et al., 1996) and there is a higher risk of
damaging the enlarged gonads of females when implanting tags in he body cavity (Bidgood,
1980; Schramm & Black, 1984). However, adverse effects of tagging mature fish are not
systematically observed and some species spawn successfully less than one week after
abdominal surgery and transmitter implantation (Baras, 1995). Similarly, most studies
where the gonadal development of fish with surgically- implanted tags has been evaluated
show little or no difference from controls (Moore et al., 1990, 1994; Martin et al., 1995; see
parallel with PIT tags in Baras et al., 2000). There may even be advantages in tagging
mature individuals of species like the vundu catfish, Heterobranchus longifilis, in which
enlarged gonads may prevent transintestinal expulsion of tags (Baras & Westerloppe, 1999).
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(d) Mobility and habitat selection

There are a few studies of the effects of tags on mobility and habitat selection in
artificial rivers (e.g. brown trout, Salmo trutta, Baras et al., in prep.), or culture tanks (e.g.
blue tilapia, Oreochromis aureus, Thoreau & Baras, 1997). Most tag-induced biases have,
however, been reported from field studies. Irregular swimming, erratic movements and
apparent disruption of surface avoidance behaviour have been reported in several species
(Guadeloupe bass, Micropterus treculi, Manns & Whiteside, 1979; largemouth bass,
Micropterus salmoides, Mesing & Wicker, 1986). Hypoactivity of newly tagged fish is most
frequent (e.g. rainbow trout, Oncorhynchus mykiss, Zimmermann, 1980; blue tilapia,
Oreochromis aureus, Thoreau & Baras, 1997), as well as increased downstream movements
of upstream migrants (Chinook salmon, Oncorhynchus tshawytscha, Haynes & Gray, 1979).
However, post-release hyperactivity has been observed too (Atlantic cod, Gadus morhua,
Hawkins et al., 1974; Lake whitefish, Coregonus clupeaformis, Bégout-Anras et al., 1998).
Further, both hypo- and hyperactivity have been observed in the same species (Thoreau &
Baras, 1997), and this makes it difficult to determine whether these were just normal changes
in the activity level of the fish, or actual perturbations resulting from the tagging procedure.
Similarly, both upstream and downstream movements were observed in sick brown trout,
Salmo trutta, that died eventually, and long downstream movements were observed in
healthy individuals (M. Ovidio, unpublished data).

This variability considerably limits the relevance of behavioural criteria, essentially
because the behaviour of the fish prior to tagging is generally unknown. Hence it is
suggested (Lagardère et al., 1996; Baras et al., in press) that these criteria would be best used
within a framework of individual modes, for an a posteriori determination of when the fish
stopped behaving normally.

(e) Additional perturbations of behaviour

The use of electronic tags in fisheries is deemed to minimise the subsequent stress of
recapture that is frequently encountered in conventional tagging studies. However, radio or
acoustic telemetry frequently implies that the fish is tracked from the banks of a river, or
from a tracking boat in lakes or at sea, and this may cause temporary perturbations of fish
behaviour. Vibrations on river banks during tracking can cause fish to move away from the
noise source, or to dive in deeper water (Baras, unpublished). Similar behaviour was
reported for European eels (Anguilla anguilla); these do not change swimming direction, but
dive to greater depth when a boat approaches within 10 m, then regain their original depth
after the boat has passed (Westerberg, 1983). Boat engines are extremely noisy and can be
detected at distances of hundreds of metres by several fish species, including Atlantic cod
Gadus morhua (Stasko & Buerkle, 1975). Whether all fish change their mobility pattern at
the approach of a boat is uncertain. Stasko & Pincock (1977) stated that pink salmon
(Oncorhynchus gorbuscha), Chinook salmon (O. tshawytscha), American eel (Anguilla
rostrata), white bass (Morone chrysops) and largemouth bass (Micropterus salmoides) were
apparently not affected, while reactions had been reported frequently in dusky shark
(Carcharhinus obscurus), white marlin (Tetrapturus albidus) and in some cases in sockeye
salmon (O. nerka) and Atlantic salmon (Salmo salar). Avoidance reactions of marine fish to
research vessels and fishing gear are discussed in some detail in Miston (1995)

7.4.7 Effects of tags on physiology

Although the physiology of newly tagged fish has rarely been investigated, one aspect
of this problem has already been addressed indirectly in section 7.3.3.f., which deals with
the physiological changes (i.e. increased gas exchange or increased rates of fin movement)
that may be needed to compensate for the added mass of the tag.
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Surgically-tagged fish with open incisions may experience difficulty in maintaining
their osmotic balance, and their physiology may thus be affected for a variable period, whose
length will depend on the capacity of the fish to repair tissue. This period is likely to last at
least until the incision is filled with connective tissue (2 days to several weeks, depending on
species, age and temperature; see Anderson & Roberts, 1975; Baras et al., in press). It
should be complete once the epidermis has been reconstituted over the incision area.
However, these aspects have never been investigated in detail, and it is also uncertain
whether quicker ways to close the incision, such as use of cyanoacrylate adhesives, minimise
the problem (Nemetz & MacMillan, 1988; Petering & Johnson, 1991; Baras & Jeandrain,
1998). Similarly, the effects of chronic lesions caused by the threads of external tags on
osmotic balance are unknown.

There is little doubt that infections, haemorrhages or damage to organs due to erosion
by the tag, or the tag expulsion mechanism, affect fish physiology too, but the extent of these
perturbations has rarely been measured during tagging feasibility studies. Martinelli et al.
(1998) provided evidence for reduced levels of plasma proteins in newly tagged Chinook
salmon (Oncorhynchus tshawytscha) that lasted for at least 5 days in surgically-tagged fish,
and at least 21 days in fish carrying transmitters in their stomachs. These changes were
deemed to reflect reduced food intake. Claireaux and Lefrançois (1998) measured metabolic
rates of externally-tagged Atlantic cod (Gadus morhua) and sea bass (Dicentrarchus labrax)
and found that these were substantially higher than in untagged fish, although they estimated
that the impact of tag carrying was low with respect to the metabolic capacities of these two
species.

7.4.8 Effects of PIT tags

Because of their small size (11 x 2.2 mm in diameter, 70 mg in the air and 40 mg in
water), there is a low probability that PIT tags cause a major interference with fish life
processes (Nielsen, 1992), and this is indeed the case in husbandry management programmes
where the technique is used (Jenkins & Smith, 1990; Poncin et al., 1990). Short term effects
of PIT tagging have been noticed while tagging broodstock, but these are mainly a result of
capture and handling (Baras & Westerloppe, 1999).

However, precisely because of their small size, PIT tags can be applied to small
juvenile fish (Prentice et al., 1990; Peterson et al., 1994; Ombredanne et al., 1998), which
may thus be confronted with problems similar to those encountered in telemetry studies with
adult fish, where transmitters are implanted into the body cavity. These include difficulties
in buoyancy compensation, reduced access to food and slower growth over the first post-
tagging days when using tags of such a size that the tag:fish weight ratio in air exceeds 3%
(Nile tilapia, Oreochromis niloticus; Baras et al.,1999; perch, Perca fluviatilis; Baras et al.,
2000). Similar but less severe effects were noticed in fish with lower tag ratios (Baras et al.,
op cit.; Baras & Westerloppe, 1999). Ombredanne et al. (1998) also reported depressed
growth of brown trout (Salmo trutta) parr after PIT tagging, but the extent of growth
depression was comparable with that observed after adipose fin clipping alone. As for most
other tags implanted surgically, normal growth resumes when the incision has healed.
Healing is usually achieved in less than 14 days (salmonids; Prentice et al., 1990), and
sometimes as fast as 7 days (catfishes; Baras & Westerloppe, 1999), either because the
incision is small compared with those used for telemetry tags, or because the fish are
younger and have greater capacity for wound repair. In contrast to salmonids, the healing
rate in small juvenile perch and tilapia is faster when the PIT tag is inserted manually
through an incision made with a scalpel than when using conventional injectors (Baras et al.,
1999). The latter procedure also causes much higher mortality rates than the former, and this
contrasts too with young salmonids, for which injectors are usually efficient and innocuous.
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The relative inadequacy of injectors in tilapia or perch smaller than 10 g is due to the
difficulty of controlling the penetration of the hypodermic syringe following piercing of the
body wall. This is much more rigid than in salmonids, for which the injector was originally
developed.

PIT tags are encapsulated in inert glass, which has few adverse effects on fish tissues,
even several years after implantation. Plastic tips covering PIT tags further limit their
propensity to migrate through muscular tissues, causing further damage. Probably for these
reasons, the retention of PIT tags is usually extremely high (92-96 % in juvenile snapper,
Pagrus auratus, Quartaro & Bell, 1992; 96.6 % in juvenile Salmo trutta, Ombredanne et al.,
1998; 99-100 % in Chinook salmon, Oncorhynchus tshawytscha, Prentice et al., 1990; 100
% in largemouth bass, Micropterus salmoides, Harvey & Campbell, 1989). By analogy with
observations in studies where sutured and non sutured incisions were evaluated (Baras et al.,
1999; Baras et al., in press), it is likely that most tags were lost via the incision before the
wound had healed. As observed for telemetry transmitters, PIT tags remained free in the
body cavity of some species (Salmonids: Prentice et al., 1990), whereas they frequently
became encapsulated in others (Cichlids; Baras et al., in press a; Percids; Baras et al., in
press b; Clariids; Baras & Westerloppe, in press). Though encapsulation was frequent in
these species, no single tag expulsion was observed in juvenile tilapia or perch, at least when
the incision had been closed by a single stitch. Some catfishes, however, expelled the tag
through the intestine, as observed for electronic tags in adults (Baras & Westerloppe,1999).

Effects of PIT tags on physiology and behaviour have rarely been investigated.
Jenkins & Smith (1990) found no adverse effect of PIT tagging on spawning in breeders of
red drum (Sciaenops ocellus) and striped bass (Morone saxatilis), and PIT tagging juvenile
tilapia did not prevent their sexual maturation and breeding (Baras et al., in press).
Similarly, no difference was observed between the development of gonads or accumulation
of abdominal lipid reserves in PIT tagged and untagged juvenile perch (Baras et al., 2000).
No effect on swimming stamina or stride efficiency was found in PIT tagged juvenile
Chinook salmon and rainbow trout (Prentice et al., 1990), but signs of negative buoyancy
were observed in juvenile perch and tilapias where tag ratios were higher than 3 %.

7.5 CONCLUSIONS

1. Tagging fish with electronic tags can generate numerous biases, the extent of
which and duration of varies between species and environments. However,
successes have been associated with attachment procedures tailored to the species
of interest during the course of feasibility studies.

2. Scientists using electronic tags are increasingly selecting surgical techniques,
mainly because adverse effects decrease over time. Surgery, however, involves
longer training and more practice than is required for other attachment procedures.

3. In all tagging studies, attention should be paid to the size of the tag since excessive
added weight is the most widely cited adverse bias. The tag:fish weight ratio
should be kept low and drag, too, should be minimised when external tags are
used. Research programmes should also be tailored to the capacities of the fish
instead of imposing constraints that cannot be overcome by the fish, except after
an adaptive process, whose duration exceeds that of the study.

4. Fish species have anatomical, physiological and behavioural peculiarities that
make them unique, and it is thus worthwhile designing a feasibility study before
implementing any field research, both for animal welfare reasons and reliability of
results.

5. Increasing attention should be dedicated to lesser studied factors, such as
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attachment threads, closing material, tag shape and coating, pre- and post-
operative care and confinement, since these may condition the actual success of
tagging, and duration of post-tagging perturbation.

6. Identifying the duration of the post-operative perturbation is a sensible goal in any
feasibility study, especially since electronic tags can now be programmed to
transmit or collect data after delayed starts. DSTs can also be used to record post-
operative effects, and thus observe directly how long the process lasts.

7.6. EFFECTS OF TAGS ON ORGANISMS OTHER THAN FISH

An exhaustive review of this topic is outside the remit of CATAG, but a few points
are worth making. Tagging of marine mammals and birds (particularly seals and penguins)
is common. Metal flipper tags are usually used for identification and are attached without
anaesthetic. Tagging by hot-iron branding is still extensively used (e.g. on elephant seal
pups; Feydak, personal communication). Though frowned upon ethically or for reasons of
animal welfare, it is an extremely useful technique because the brands are readable after
many years, whereas metal tags are lost. Satellite tags have been applied to both seals and
penguins and are usually attached to fur or plumage by adhesives. This involves anaesthesia
in seals (because they cannot be conveniently and safely immobilised in any other way).
This anaesthesia may involve double administration of anaesthetics, first by darting to
capture the animal concerned, secondly by administration of spinal anaesthesia during the
tag attachment process. Care has to be taken to ensure that darted animals do not reach the
water before capture; drowning is a significant risk.

Marine turtles have largely been tagged with flipper tags for identification. Tag loss
rates are high and holes in flippers made during tagging may be susceptible to fungal
infection. Satellite tags have also been attached to sea turtles. These cause minimal
problems for the hard-shelled green, loggerhead, ridley and hawksbill turtles, other than
increasing drag resistance (and presumably energy expenditure), but there are special
problems with the large leatherback turtle Dermochelys coriacea. Satellite tags cannot be
attached by adhesives because of the leathery, oily nature of the carapace and plastron.
Early trials with towed tags, or tags attached by webbing harnesses failed with some
mortalities (unacceptable in an endangered, protected species). Current satellite tagging with
this species involves the fitment of plastic-protected harnesses with biodegradeable portions
that allow the harness to be lost after some weeks or months.

Crustaceans have been tagged at least since the 1930s. Originally, tags were attached
to crabs and lobsters to establish distances of migration and metal (later plastic) tags were
simply wired through holes in the shell. These holes often enlarged and showed signs of
infection. The main problem for crustacean tagging is to attach a tag that remains on the
animal when it moults. Wired tags had to be very carefully placed along moult lines on the
carapace to achieve this. Modern tags (lobster tags, spaghetti tags, streamer tags) are
generally attached to the animal by piercing muscles, often with barbed anchors, or passing
tags through the abdominal musculature from one side to the other (See Chapter 4 for more
detail). Access is through arthrodial membranes, not the hard shell. If this is done
effectively, the tags usually survive moulting. However, there are some reports of growth
after moult being distorted by poorly-placed tags. No welfare problems have been reported
from lobster stock enhancement programmes involving injection of coded-wire tags into the
tail musculature of juvenile lobsters.
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7.7 REQUIREMENTS AND RECOMMENDATIONS

All tagging procedures should aim at minimising short-term pain and stress to fish,
and should avoid, as far as possible, causing long-term deterioration in health.

Planning of new tagging trials on familiar species should always involve full
consideration of existing data on procedures, to ensure that mortalities, ill-health and tag
losses are minimised. Laboratory feasibility studies to establish effective procedures on new
species should ideally precede full field trials.

Fish tagging practitioners should all be required to undergo training Current
legislation often requires experimentation licence holders to undergo generalised training in
the legality of various procedures and holding techniques, but surgical procedures on fish are
very different from those used on terrestrial mammals.

Anaesthesia should be used to minimise pain and trauma, save in circumstances
where anaesthesia itself is more detrimental to fish.

All efforts should be made to avoid chemical residues associated with the tagging
process reaching the human food chain.

Discussions amongst CATAG participants suggest that low temperatures may be
effective in having an anaesthetic-like effect, at least in some fish species. Where such
procedures are legal, it has sometimes been found that survival of surgical procedures is
better when fish are kept cold during surgery than if they are anaesthetised. It is
recommended that research (including neurophysiological investigations) be carried out to
evaluate whether lowered environmental temperature is a humane approach to support of
tagging operations involving surgery. It is appreciated that such research would have to
encompass warm-temperate fish, as well as cold-water species. In addition, the long-term
consequences of cold-exposure would also require study.
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Species Tagging
method

Transmitter
Mass and size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Atlantic
sailfish
(Istiophorus
platypterus)

Externally
attached

Field 8 2 h 56 min-28
h 21 min

Seven fish survived. One fish sustained severe eye injury
and was killed by a shark 6 h 25 min after release

Jolley &
Irby (1979)

Atlantic
salmon -
juveniles
(Salmo salar)

Surgically-
implanted

1.3 g Laboratory 5 tagged parr (127-
172 mm), 5 tagged
smolts (122-189
mm), 5 sham-tagged
(surgery carried out,
but no trans-mitter
inserted) and
controls

3-150 days No significant effects of tagging on growth, feeding or
swimming behaviour in either parr or smolts. Recovery
from the surgical implantation was rapid and total,
infection was absent and physiological processes such as
smoltification and maturation of testes in precocious parr
were unaffected. Expulsion of the transmitter through the
body wall occurred in a number of fish without adversely
affecting the animals.

Moore et
al.,, (1990)

Atlantic
salmon -parr
(Salmo salar)

Externally
attached

2.7 g in air,
volume 0.4 ml,
density 6.7 g/
ml

Laboratory 50 fish with
ultrasonic tags, 50
fish with Carlin tags
and 50 controls.

17 April – 7
May

Attachment of transmitter significantly affected the
growth rates of the fish. Fish less than 160 mm in length
lost weight and showed no change in length. Fish over
160 mm in length put on weight, however less than the
controls. For fish between 160 and 180 mm in length, the
increase in length and weight was significantly smaller in
tagged fish than in untagged fish. For fish over 180 mm
in length, no difference could be detected in the length
gains between tagged and untagged fish, while the
increase in weight was smaller in tagged fish than in
controls.

Greenstreet
& Morgan
(1989)

Atlantic
salmon -parr
(Salmo salar)

Inserted in
stomach

0.8-0.9 g, 12.5
x 9 x 4.5 mm

Laboratory
tanks

8 tagged and 9
controls

Eight days Three of the fish regurgitated the transmitters. The
proportion of fish that fed was significantly higher in the
control group compared with the tagged group. No food
was eaten on day 1 or 8 by test fish that retained the
transmitters. Food was also eaten by some fish that had
rejected the tags.

Armstrong
& Rawlings
(1993)



135

Species Tagging
method

Transmitter
Mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Atlantic
salmon -
smolts
(Salmo
salar)

Externally
attached and
inserted in
stomach

Different
sizes: 1.25-
3.94 g in
water, 4.00-
6.67 g in air

Laboratory In total 190
tagged, 79 sham
tagged and 55
controls (< 20 cm)

Effects of transmitters on stamina were measured. Critical
swimming speeds were similar for fish in control groups and
two of the groups with internal transmitters. The widest internal
tag (19 x 10 cm) caused a significant decrement in swimming
performance. Externally placed transmitters caused a decrease in
swimming speed compared with untagged fish.

McCleave
& Stred
(1975)

Atlantic
salmon -
smolts
(Salmo
salar)

Inserted in
stomach

4.0 g in
water, 5.6 g
in air, 33 x 8
mm

Laboratory In total 149 tagged
fish and 152
controls (about 20
cm)

Up to 24
hours

The tagged fish were able to compensate for negative buoyancy
induced by the tag if permitted to fill their swim-bladders by
gulping air. Smolts denied access to the water surface after
tagging never regained buoyancy. It is recom-mended to be
aware of behavioural effects caused by negative buoyancy for 2-
8 hours after tagging and release.

Fried et al.,,
(1976)

Atlantic
salmon
(Salmo
salar)

Inserted in
stomach

10-16 g in
water, (0.2-
0.4 % of the
fish weight in
air), 6.5–9.6 x
1.9 cm

Field 40 (3-6 kg, 67-84
cm fork length)

21 June – 8
November

Five fish regurgitated the transmitter soon after release. Two
salmon were recaptured 32 and 42 days after tagging and
release. Neither showed ill effects from carrying the trans-
mitter.

McCleave
et al.,,
(1978)

Bass
-juvenile
(Dicentrarch
us
labrax)

Surgically-
implanted

Laboratory Tagging had minimal effects on the subsequent survival and
behaviour

Moore et
al.,, (1994)

Bluegill
(Lepomis
macrochirus
)

Inserted in
stomach

3.38 g, excess
mass in water
of 2.76 g (2.4
% of the fish's
mass)

Laboratory 50 tagged , 22
sham handled and
94 controls (ca
130 g)

Effects of negative buoyancy was studied. The fish required
about 300 min to reach hydrostatic equilibrium when adjust-
ment proceeded within 0.5 m of the surface. Before neutral
buoyancy was reached, pectoral fin movements increased.
Longer times are required for deeper releases.

Gallepp &
Magnuson
(1972)

7.9 APPENDIX I. Summary of main results from studies dealing with effects of
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Species Tagging
method

Transmitter
Mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Bluegill
(Lepomis
macrochirus)

Surgically-
implanted

2.81 g, 2.0 x
1.0 x 0.5 cm

Raceway 40 tagged and 40
controls (mean
mass 133 g)

8 weeks Mortality, adverse morphological effects, altered behaviour and
limited healing in bluegills suggest that implanted transmitters
impaired their health, especially at higher temperatures.

Knights &
Lasee
(1996)

Carp
(Cyprinus
carpio)

Surgically im-
planted and
inse-rted in
stomach

Field 1 implanted and 1
in stomach

7 weeks Tagged fish kept on having high moving ability and did not
appear affected by handling stress

Steinbach
(1986)

Channel
catfish
(Ictalurus
punctatus)

Surgically-
implanted

Small: 36.4 g
Large: 72.8 g
both 19 x 90
mm

Pond 21 with small tags,
18 with large tags,
20 controls, 20
sham-implanted
(mean 3.64 kg)

Average 112
days

Surgical implantation of transmitters did not increase mortality or
decrease growth. 25 of 35 fish lost their transmitters. Retention
rate of small transmitters was significantly greater than that of
large transmitters.

Summerfe
lt &
Mosier
(1984)

Channel
Catfish
(Ictalurus
punctatus)

Surgically-
implanted

Large: 20 x
87 mm, 2.0 %
of fish mass
Small: 15 x
57, 0.5 % of
fish mass

Laboratory 74 (0.7-5.2 kg) 23 days Within 23 days, two fish died and 39 fish expelled their
transmitters. Tissue reactions and number of incision exits were
significantly greater with transmitters of 2.0 % of body mass than
with transmitters of 0.5 % of body mass.

Marty &
Summerfe
lt (1986)

Chinook
salmon
(Oncorhynch
us
tsawytscha)

Externally
attached and
surgically-
implanted

Large: 68 g in
water, 11.5 ±
0.4 x 2.7 cm
Small: 34 g in
water, 7.9 ±
0.4 x 1.9 cm

Field In total 39 with
external tags, 24
with internal tags
and 64 controls
(65-103 cm long,
1,4-12,7 kg)

During three
migration
periods

During upstream migration travel times and percent returns did
not differ between externally-tagged fish that retained their
transmitters from point of release to upstream trapping facili-ties.
Externally-tagged fish that lost their transmitters moved upriver
more slowly than the controls, although percent returns were
similar. Most internally tagged salmon eventually mig-rated
downstream. Of those migrating upriver, none crossed the first
trapping facility 6.5 km upriver form the release site.

Gray &
Haynes
(1979)

ultrasonic and radio transmitters on fish.



137

Species Tagging
method

Transmitter
Mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Cod
(Gadus
morhua)

Externally
attached

8.26 g in air,
4 g in sea
water, 5 x 1
cm

Laboratory/
field

(50-70 cm) Based on drag measurements in a flume, the extra output req-
uired for tagged fish to maintain the same steady speed as un-
tagged fish was between 3 % and 5 %. and to maintain the same
constant rate of acceleration less than 1 %. They concluded that
the swimming performance of cod observed by sector-scanning
sonar in the southern North Sea was unlikely to have been
affected in any significant way by the addition of a tag.

Arnold &
Holford
(1978)

Cod
(Gadus
morhua)

Inserted in
stomach

5 g in water,
56 x 16 cm

Laboratory 10 tagged (985 g),
10 controls (940
g)

35 days The transmitters did not seem to affect food intake or feeding
behaviour. More than half of the salmon regurgitated the
transmitter during the first 7 days of the experiment.

Lucas &
Johnstone
(1990)

Coho salmon
(Oncorhynch
us kisutch)

Inserted in
stomach

20 g , 6.5 x
2.0 cm (some
larger
transmitters, 8
mm long,
used in one
year)

Field 186 (405-725 mm) 1984-1987 61 salmon were not detected upriver from the release site. Some
fish left the river. Some fish died because of predation or
handling. Predators were observed in the vicinity of the tagging
site, and tagged fish were susceptible to predation. The standard
transmitter used did not appear to have any adverse effects on the
salmon, although some problems were ex-perienced with the
larger transmitters.

Eiler
(1990)

Colorado
squawfish
(Ptychocheil
us lucius)

Surgically-
implanted

< 1 % of the
body mass of
the fish

Field 97 Results from field studies 1978-1985. No transmitter expulsion
was detected. Growth rates of 14 recaptured fish did not differ
from 59 nonimplanted dangler-tagged fish of the same size. There
was no difference in mortality between implanted and dangler-
tagged fish.

Tyus
(1988).

Crownose
ray
(Rhinoptera
bonasus)

Externally
attached

Laboratory Wing-beats/s was used as a measure of energy expenditure.
Transmitter attachment had no immediate effect on ray swim-
ming behaviour below a transmitter-to-ray mass ratio of 0.03.

Blaylock
(1990)

Appendix I continued.
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Species Tagging
method

Transmitter
mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Dace
(Leuciscus
leuciscus)

Externally
attached

2.31 g in air,
0.9 g in water,
2.0 x 0.9 x
0.8-0.9 cm

Semi-natural
conditions

7 tagged and 19
controls (< 300
mm)

One
experiment
of 6 days and
one of 10
weeks

By the second day, the behaviour of the tagged fish appeared
normal and they were integrating with the rest of the shoal.
Median condition factors of tagged fish did not differ from those
of untagged fish over a 10-week period. Results from field studies
in River Frome indicate that release method affect the behaviour.
Fish released immediately after tagging often moved significant
distances soon after release, while fish allowed to acclimatise for
24 h and released remotely from a holding cage, did not exhibit
such behaviour.

Beaumont
et al.,,
(1996)

Lake Ontario
brown trout
(Salmo
gairdneri)

Externally
attached and
surgically-
implanted

Field 8 externally
25 implanted

Spring and
fall

Transmitter attachment related mortality was 0 and 32 %
(externally and surgically-tagged, respectively)

Nettles et
al.,, (1983)

Largemouth
bass
(Micropterus
salmoides)

Externally
attached

Different
types: 5.1-
10.5 g in air,
3.3-7.0 g in
wa-ter, tag
weight in
water 1.5-2.5
% of fish
mass.

Pond The feeding rate of tagged largemouth bass was lower than that of
untagged fish over a 3.5 week period. It was concluded that
weights of external transmitters in water should be less than 1.5 %
of the fish weight.

Ross &
McCormick
(1981)

Largemouth
bass
(Micropterus
salmoides)

Surgically-
implanted

Hatchery
pounds and
laboratory

10 tagged and 10
controls + 8 fish
for buoyancy
compensation tests

No differences in swimming movement or catchability between
transmitter and control fish. All fish were observed feeding and
spawning. Negative buoyancy of the transmitters affected bass
temporarily, and fin beats increased only during the time it took
the fish to adjust to the effect of the transmitter.

Crumpton
(1982)

Muskellunge
(Esox
masquinongy)

Surgically-
implanted

Field 5 6-11 days No apparent effect of tagging on equilibrium, swimming or
feeding. No apparent abnormally high amount of movement
immediately after release.

Crossman
(1977)

Appendix I continued.
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Species Tagging
method

Transmitter
mass and size

Observation Number of fish
(fish size)

Observation
period

Results Referenc
e

Plaice
(Pleuronectes
platessa)

Externally
attached

8.26 g in air,
4 g in sea
water, 5 x 1
cm

Laboratory/
field

(36-52 cm) Based on drag measurements in a flume, the extra output req-uired
for tagged fish to maintain the same steady speed as un-tagged fish
was between 3 % and 5 % and to maintain the same constant rate
of acceleration less than 1 %. It is conclu-ded that the swimming
performance of plaice observed by sector-scanning sonar in the
southern North Sea was unlikely to have been affected by the
addition of a tag.

Arnold &
Holford
(1978)

Rainbow
trout
(Oncorhynch
us mykiss)

Surgically-
implanted

Laboratory Transmitter mass caused a highly significant decrease in
spontaneous activity and avoidances/pursuits, while transmitter
length decreased spontaneous activity only. The operation itself
did not perturb the animals.

Zimmerm
ann
(1980)

Rainbow
trout
(Oncorhynch
us mykiss)

Externally
attached

Mk V tags:
single
package. Mk
VI tags:
two packages
of equal size
mo-unted
symmetri-
cally on each
side of the
fish. Both:
1.55 g in air,
volume 0.78
ml, density
1.99 g/ml

Laboratory 8 fish with Mk V
tags, 4 fish with
Mk VI tags and 8
controls (length
11.5 ± 0.5 cm)

Effects on tail beat frequency (TBF) and operculum beat rate
(OPB) of rainbow trout was measured at different swimming
speeds. Both types of transmitters raised both TBF and OBR. The
symmetrical tag affected the behaviour less, especially at low
swimming speeds, even though the relative drag was greater by
this transmitter.

Lewis &
Muntz
(1984)

Rainbow
trout
(Oncorhynch
us mykiss)

Surgically-
implanted

Large: 2.2 g
in air, 13 x 19
mm
Small: 1.0 g
in air, 10 x 16
mm

Aquarium 15 with large
transmitters and 15
with small
transmitters

165 –175
days

Eight fish died during the experiment. Eight fish with large
transmitters expelled the transmitter 42-175 days after
implantation. Five fish with small transmitters expelled the
transmitter 86-175 days after implantation.

Chisholm
& Hubert
(1985)

Appendix I continued.
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Species Tagging
method

Transmitter
mass and size

Observation Number of fish
(fish size)

Observation
period

Results Referenc
e

Rainbow
trout
(Oncorhynch
us mykiss)

Externally at-
tached, surgi-
cally
implanted and
inserted in
stomach

3.0 ± 0.2 g,
2.9 ± 0.2 x 1.0
cm

Laboratory 80 (24.5-30.5 cm,
168-372 g)

2 weeks
observation
in tanks,
followed by
swimming
tests.

Only one fish changed dominance rank after tagging. Externally-
tagged fish had significantly lower exhaustion times in swimming
tests than the other tagged groups and controls. Reduced feeding
resulting from stomach insertion was not evident.

Mellas &
Haynes
(1985)

Rainbow
trout
(Oncorhynch
us mykiss)

Surgically-
implanted

1-1.6 % of the
body mass of
the fish, 12.5
x 48 mm

Laboratory 21 tagged, 5 sham-
implanted and 8
controls (mean
mass 327-392 g)

7 months No significant difference in mortality or growth occurred between
control, sham-implanted and implanted groups. Transmitters
became encapsulated by connective tissue. Three fish expelled
transmitters via the body wall.

Lucas
(1989)

Rainbow
trout
(Oncorhynch
us mykiss)

Surgically-
implanted

10 g, 13 x 50
mm

Pond 10 tagged fish and
10 controls (mean
fork length 351
mm)

47 days Study close to spawning time. All fish survived and no transmitter
expulsion appeared. There were no differences in weight,
condition factor, or gonad development between tagged fish and
controls.

Martin et
al.,,
(1995)

Rainbow
trout
(Oncorhynch
us mykiss)

Surgically-
implanted

2.6 g in air, <
2 % of fish
mass

Laboratory 11 tagged and 8
controls (240-290
mm fork length)

7 days Studied effect of transmitters on social interactions. Dominant fish
with dummy transmitters retained their rank and showed no
differences from control fish in amounts of agonism and
interaction time with subdominant fish.

Swanberg
& Geist
(1997).

Razorback
sucker
(Xyrauchen
texanus)

Surgically-
implanted

< 1 % of the
body mass of
the fish

Field 9 Results from field studies 1978-1985. No transmitter expulsion
were detected. Growth rates of 2 recaptured razorback suckers did
not differ from 39 nonimplanted dangler-tagged fish of the same
size. There was no difference in mortality between implanted and
dangler-tagged fish.

Tyus
(1988).

Rock bass
(Ambloplites
rupestris)

Externally
attached and
surgically-
implanted

9 x 40 mm
and 11 x 34
mm

Laboratory Studied effects on equilibrium and feeding. Rock bass did not
seem suitable for internal tagging of the sizes used because of the
shape and size of the fish.

Chamberl
ain
(1979)

Appendix I continued
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Species Tagging
method

Transmitter
mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

Sauger
(Stizostedion
canadense)

Surgically-
implanted

Experimental
channels

21 x 2 All specimens which survived to the end of the experiment lost
weight; the effect on growth was considered inconclusive. There
did not seem to be any relationship between survival and sex or
size and the implanted dummy transmitters.

Wrenn &
Hackney
(1979)

Smallmouth
bass
(Micropterus
dolomieu)

Externally
attached and
surgically-
implanted

9 x 40 mm
and 11 x 34
mm

Laboratory Effects on equilibrium and feeding by tagging was studied. It was
concluded that for short term tracking (1-2 days), external
transmitters in front of the dorsal fin appear best. For long term
tracking, internal transmitters seem best.

Chamberlain
(1979)

Sockeye
salmon
(Oncorhynch
us nerka)

Inserted in
stomach

20 g , 6.5 x
2.0 cm (some
larger
transmitters,
8 mm long,
used in one
year)

Field 398 (405-670 mm) 1984-1987 68 salmon were not detected upriver from the release site. Some
fish left the river. Some fish died because of predation or
handling. Predators were observed in the vicinity of the tagging
site, and tagged fish were susceptible to predation. It was
concluded that the standard transmitter used did not appear to
have any adverse effects on the salmon, although some problems
were experienced with the larger transmitters.

Eiler (1990)

Sockeye
salmon
(Oncorhynch
us nerka)

Surgically-
implanted

Field 168 Spawning
season

Radio transmitters were more stressful to fish than the appli-
cation of Petersen disks. No evidence that such stress would result
in immediate mortality, would impede the fish's ability to migrate
to the spawning grounds, or cause the fish to drop out of the study
area.

Schubert &
Scarborough
(1996)

Tilapia
(Oreochromi
s aureus)

Surgically-
implanted

Aquaculture
tanks

39 (4 with motion
sensitive
transmitters)

Up to 30
months

One fish died. With one exception, all fish retained their
transmitter until the end of the study. No infections. Low level of
activity 12-24 days after surgery, however, the fish maintained
their normal diurnal activity rhythm pattern. Suggested that
tilapias need 3-4 days to completely compensate the negative
buoyancy resulting from anaesthesia and tagging.

Thoreaux &
Baras (1997)

Appendix I continued.
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Species Tagging
method

Transmitter
mass and
size

Observation Number of fish
(fish size)

Observation
period

Results Reference

White
crappies
(Pomoxis
annularis)

Surgically-
implanted

Small: 3 g in
water, 8 x 40
mm
Large: 4 g in
water, 16 x 37
mm

Field 37 (265-327 mm,
315-530 g)

April -
October

Recaptured fish were in good condition, the incisions were
healing well and the fish had fed while carrying the
transmitter.

Guy et al.,,
(1994)

White perch
(Morone
americana)

Externally
attached,
surgically-
implanted and
inserted in
stomach

3.0 ± 0.2 g,
2.9 ± 0.2 x
1.0 cm

Laboratory 100 (19.0-31.5
cm, 106-635 g)

Swimming
tests. 17 of
the fish held
for 45 days
in aquarium
afterwards

There was no significant difference in exhaustion times
among tagged fish and controls. Reduced feeding resulting
from stomach insertion was not evident.

Mellas &
Haynes (1985)

Yellow perch
(Perca
flavescens)

Externally
attached and
surgically-
implanted

9 x 40 mm
and 11 x 34
mm

Laboratory Studied effects of tagging on equilibrium and feeding.
Concluded that for short term tracking (1-2 days), external
transmitters in front of the dorsal fin appear best. For long
term tracking, internal transmitters seem best.

Chamberlain
(1979)

Yellow perch
(Perca
flavescens)

Externally
attached

Different
types, 5.1-
10.5 g in air,
3.3-7.0 g in
water, weight
in water 1.5-
2.5 % of fish
weight

Pond Tagged fish were more susceptible to predation and more
sensitive to environmental stress than were controls.
Feeding and respiration rates were similar among tagged
and control groups over a 6-week period. It was concluded
from the results that weights of external transmitters in
water should be less than 1.5 % of the fish weight.

Ross &
McCormick
(1981)

Appendix I continued
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a) Induction < 15 min, and ideally < 3 min

b) Recovery < 5 min

c) No toxicity for fish, and large tolerance margins for concentration

d) No persisting effect on fish physiology and behaviour

e) Fast excretion and/or catabolism, leaving no residues in fish tissues

f) No acclimatory or cumulative effects

g) No danger for operators

d) Easy preparation

i) Low Cost

Compound Presentation Cost
(ECU, VAT excl.)

Cost per litre of anaesthetic
solution

(ECU, VAT excl.)
Amobarbital Powder 312 / 50 g 0.94

Benzocaine Crystals 91 / kg 0.01

2-phenoxy-ethanol Liquid 25 / l 0.01

Quinaldine (90 %) Liquid 96 / l 0.03

Quinaldine sulphate Powder 114 / 25 g 0.11

Tricaine Crystals 180 / 100 g 0.18

Xylocaine (lidocaine) Powder, Crystals 111 / 250 g 0.11

7.10 APPENDIX II. DOWNLOADABLE INFORMATION SHEETS
Description of the ideal anaesthetics

(modified after Marking & Meyer, 1985, in Summerfelt & Smith, 1990)

Indicative list of the cost (1998 levels) of the main anaesthetics used in fish
tagging. The cost of 1 litre of anaesthetic solution is calculated for cyprinid

species at 15°C.
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Criteria

1. Fish destined (C) or not destined (N) for consumption by humans

2. Deep anaesthesia required (D) or sedation only (S, e.g. weighing)

3. Natural environments (M), or experimental facilities, aquaculture (A)

4. High or low volume of anaesthetic solution requested (H / L)

CDMH:Tricaine (stock solution)

CDML:Tricaine (stock solution) (*), Hypothermia(#)

CDAH:Tricaine (crystals), Hypothermia

CDAL:Hypothermia, Tricaine (crystals) (*)

CSMH:Tricaine (stock solution), Carbon dioxide (#), Electrical anaesthesia (DC)

CSML:Electrical anaesthesia (DC), Tricaine (solution stock) (*),
Carbon dioxide (#)

CSAH:Tricaine (crystals), Carbon dioxide

CSAL:Electrical anaesthesia (DC), Carbon dioxide, Tricaine (crystals) (*)

NDMH:2-phenoxy-ethanol, Hypothermia, Tricaine (stock solution)

NDML:2-phenoxy-ethanol, Hypothermia, Tricaine (stock solution) (*)

NDAH:Tricaine (crystals), 2-phenoxy-ethanol, Hypothermia

NDAL:2-phenoxy-ethanol, Hypothermia, Tricaine (crystals) (*)

NSMH:2-phenoxy-ethanol, Quinaldine sulphate, Tricaine (stock solution), Carbon dioxide, Electrical
anaesthesia (DC)

NSML:Electrical anaesthesia (DC), 2-phenoxy-ethanol, Quinaldine sulphate, Tricaine (stock
solution) (*), Carbon dioxide (#)

NSAH:2-phenoxy-ethanol, Quinaldine sulphate, Tricaine (stock solution), Carbon dioxide, Electrical
anaesthesia (DC)

NSAL:Electrical anaesthesia (DC), Carbon dioxide, 2-phenoxy-ethanol, Quinaldine sulphate

Anaesthetics, in decreasing order of preference
(*) = expensive, (#) = difficult to implement

Tentative key for decision making when choosing between
anaesthetics for fish handling and tagging
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Species Family Env. Tricaine
(mg / l)

2-phenoxy-ethanol
(ml / l)

Salmo salar (Atlantic salmon) Salmonidae C 25 0.20-0.40

Oncorhynchus sp.
(Pacific salmons)

Salmonidae C 40-60 0.20-0.30

Gadus morhua (cod) Gadidae C 50 ??

Thymallus thymallus
(grayling)

Thymallidae C 50-70 0.25

Oncorhynchus mykiss
(rainbow trout)

Salmonidae C 60 0.30-0.40

Salmo trutta (brown trout) Salmonidae C 50-75 0.20-0.30

Brycon moorei (dorada) Characidae W 80-100 0.40

Perca fluviatilis (Eurasian perch) Percidae T 90 0.40

Oreochromis niloticus
(Nile tilapia)

Cichlidae W 100 0.40

Piaractus brachypomus
(colossoma)

Serrasalmidae W 100 0.40

Prochilodus magdalenae
(bocachico)

Curimatidae W 100 0.40

Barbus barbus (barbel) Cyprinidae T 100 0.40

Leuciscus cephalus (chub) Cyprinidae T 100 0.40

Morone saxatilis (striped bass) Percichtyidae T 100 ??

Cyprinus carpio (common carp) Cyprinidae T-W 100-150 0.35-0.60

Lepomis macrochirus (bluegill) Centrarchidae T-W 150 ??

Carassius auratus (goldfish) Cyprinidae T-W 150-250 > 0.40

Clarias gariepinus (catfish) Clariidae W 120-300 0.40-0.60

Anguilla anguilla
(European eel)

Anguillidae C-T 250-500 0.80-1.00

Typical concentrations of tricaine and 2-phenoxy-ethanol
recommended for deep anaesthesia

(for deep sedation about half the dose is required)

C (cold water, 5-15°C), T (temperate water, 10-25°C), W (warm water > 25°C)
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Usual name
TRICAINE

Exact name
3-amino benzoic acid ethyl ester methanesulphonate

Synonyms:

Conditioning: - crystals highly soluble in water (1 g / 9 ml)
- stock solutions short term)

Conservation: - Opaque bottle, stored at low temperature (crystals)
- Freezing (stock solution)

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

25-60 mg / l
80-150 mg / l

± 100 mg / l
100-250 mg / l

_ 250 mg / l

Drawbacks: - Affects the olfactory epithelium (channel catfish)
- Acid solution, which can affect the motility of spermatozoa, and cause respiratory stress
- High cost

Toxicity
- non mutagenic
- No specific toxicity at the concentrations above

Permanence, legal
aspects:

- Insignificant residues after 24 h
- 21-d delay between anaesthesia and consumption (FDA)

Suggestions - Add sodium bicarbonate (NaHCO3) before anaesthesia to buffer the anaesthetic solution (about 250 mg
de NaHCO3 for 100 mg of tricaine)

- Do not buffer a stock solution before storage(inactivation)

Tricaine methanesulonate, salt of methanesulphonate, metacaine, MS-222TM, FinquelTM

Usual name 2-PHENOXY-ÉTHANOL Exact name 1-hydroxy-2-phenoxyetane

Synonyms: Ethylene glycol monophenyl ether, phenoxetol, phenoxethol, beta-hydroxyethyl phenyl ether,
phenyl cellosolve

Conditioning: - Dense (1.1 g / l), transparent liquid, with low solubility in water (27 g / l)
but high solubility in alcohol

Conservation:

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

0.2-0.4 ml / l
0.3-0.8 ml / l

± 0.4 ml / l
0.4-0.8 ml / l
0.8-1.0 ml / l

Drawbacks: - Irritations of epithelial tissues
- Little margin between induction and toxicity in salmonids

Toxicity - Damages the liver and kidney at subletal doses in mammals, and possibly in fish
- Acute toxicity in some species

Permanence, legal aspects: - unknown
- not approved for fish food (FDA)

Suggestions Prepared syringes for use in natural environments

- Opaque bottle
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Usual name
QUINALDINE

Exact name
2-methylquinoline

Synonyms:

Conditioning: - Transparent liquid, with low solubility in water but high solubility in organic
solvents (alcohol, acetone)

Conservation: - Opaque bottle and cap (oxidation by air and light)

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

5-12 mg / l
2,5-20 mg / l
20-40 mg / l
30-?? mg / l

?? mg / l

Drawbacks: - long delay between immersion and injection
- fish still sensible to tactile stimuli
- no action at pH < 6.0
- irritation of epithelia of operators
- strong, persistent odour
- strong inter individual variability of responses to anaesthesia

Toxicity - increases with water temperature and alkalinity
- suspected as carcinogen for operators (larynx, pharynx)

Permanence, legal aspects: - no residue in fish muscles after 24 h
- accumulation in adipose tissue
- not approved for fish food (FDA)

Suggestions - solutions (60 % acetone, 40 % water) are highly stable, even in the long run
- elimination of tactile reflexes by a preliminary injection of a relaxing compound (gallamine

triethiodide, pancurorium bromide,…)

none

Usual name
QUINALDINE
SULPHATE

Exact name
Quinate

Synonyms: No usual synonym

Conditioning: - Light yellow crystalline powder, with high solubility in water

Conservation: - Opaque bottle and cap (oxidation by air and light)

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

25-40 mg / l
< 75 mg / l

15-60 mg / l
?? mg / l
?? mg / l

Drawbacks: - inconvenience typical of acid solutions (see Tricaine)
- fish still sensible to tactile stimuli
- irritation of epithelia of operators

Toxicity - increases with water temperature and alkalinity
- suspected as carcinogen for operators (larynx, pharynx)

Permanence, legal
aspects:

- no residue in fish muscles after 24 h
- not approved for fish food (FDA)

Suggestions - buffer the solution prior to use (see tricaine)
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Usual name
BENZOCAINE

Exact name
Ethyl aminobenzoate

Synonyms: p-aminobenzoic acid ethyl ester, 4 aminobenzoic acid ethyl ester, ethyl-p-aminobenzoate

Conditioning: - Powder with low solubility in water but high solubility in organic solvents
(acetone, alcohol)

Conservation: - Opaque bottle and cap (oxidation by air and light)

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

25-50 mg / l
25-150 mg / l
25-100 mg / l

?? mg / l
?? mg / l

Drawbacks: - High variability of delay between immersion and induction depending on fish size and water
temperature

- Long recovery, especially in warm water species

Toxicity - increases with water temperature increase
- No specific toxicity at the concentrations above

Permanence, legal aspects: - variability between species, accumulation in muscles
- not approved for fish food (FDA)

Suggestions - buffer the solution prior to use (see tricaine)

Usual name
CARBON
DIOXIDE

Exact name Carbon dioxide

Synonyms: CO2, Carbonic acid, carbonic gas, carbonic anhydride

Conditioning: - non combustible gas non combustible, stored at -35°C (solid), or as sodium bicarbonate (NaHCO3,
powder); dissolved in water (6.75 %), with addition of sulphuric acid (3,95 %) to obtain the desired
concentration in carbonic acid, at a pH in between 7 and 9

Conservation: - no particularity for bicarbonate
- low temperature for CO2

:Typical concentrations Salmonids
Cyprinids
Cichlids, Characids
Catfishes
Eels

150-650 mg / l
150-650 mg / l

?? mg / l
?? mg / l
?? mg / l

Drawbacks: - mainly used for sedation
- risk that the operator looses conscience at _ 10 % CO2 in the air
- risk inherent to the use of sulphuric acid
- risk inherent to the use of low temperature for solid CO2
- hard to obtain deep anaesthesia, and to maintain the oxygen level

Toxicity - risk inherent to hypercapnia in fish, especially with respect to osmoregulation

- No permanence
- approved for fish food (FDA)

Suggestions mixing O2 and CO2 in pressurised cylinders to obtain stable concentrations

Permanence, legal aspects:
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8. DATA ANALYSIS AND MODELLING

8.1 INTRODUCTION

Quantitative analysis of fish tagging results has a 100 years history, going back to the
first calculations done by C.G.J. Petersen during the 1890s. Petersen (1896) founded the
basic theory behind most developments in the use of fish tagging for estimating exploitation
rates and population abundance. Since then, many new and improved tagging techniques
have been developed, and the analysis and modelling of tagging data has evolved along with
new demands and possibilities.

In order to meet the objectives of mass tagging studies (systematic tagging in large
enough numbers to secure quantitative treatment), adequate tools are needed to handle the
large amount of data generated from the recaptures. Similarly, new developments in
electronic tags, particularly the fast evolving utilisation of data storage tags (DST), mean that
large amounts of data can be obtained on each tagged fish and its environment. In both
cases, appropriate models and statistical techniques are crucial in order to make the best use
of the available information.

Traditionally, many tagging programmes have been carried out without definite goals
and hence without a well-considered experimental design. Some have simply sought to
provide qualitative information on distribution patterns and migration routes. Such
programmes have sometimes been continued for many years to maintain a time series,
without reconsidering whether the scientific objectives of the programme are being met. The
costs of catching fish for tagging is often high, due mainly to the cost of employing vessels,
and tag recovery programmes may also be expensive. The effectiveness of tagging
programmes is dependent on the quality of both of these phases and great care must be taken
in planning to make best use of available resources. The tagging programme must be
carefully planned in order to ensure that the tagged fish are representative of the population.
Similarly the recovery programme must obtain representative samples of the fishing
mortality of the population. Modelling and analysis tools can be used at all stages of a
tagging programme (planning, design, quality control, analysis of results) to improve
efficiency and reduce costs.

Two basic goals are to:
• Optimise strategies of tagging experiments
• Extract maximum information from tag recapture data

In the following sections, methodologies applied in the analysis of tagging data will
be highlighted (without giving a complete review) under the following headings:

• Experimental design
• Estimation of abundance and mortality
• Modelling of fish behaviour, movement and migration
• Methodologies used for other animal groups.

The last point includes a brief inspection of modelling and analytical tools utilised for
other groups of animal (reptiles, birds and mammals), bearing in mind that these approaches
may be of direct relevance to fish tagging studies.
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8.2 CURRENT METHODOLOGY

8.2.1 Experimental design

Substantial errors can be introduced at several stages of tagging experiments. The
limited use of tagging in evaluation of commercial fish stocks in the EU at present is closely
linked to the uncertainty associated with such data. It is therefore of major interest to
highlight these questions and look at potential solutions for the future. The errors associated
with the design of tagging experiments that permit quantitative data treatment fall into three
categories:

• Errors associated with the non representative distribution of tags in the
population (release errors)

• Errors due to effects of tags, or tagging, on the survival or behaviour of the
fish (tagging mortality, tag losses, increased predation)

• Errors due to non representative sampling and/or reporting occurring in the
recapture phase (recapture errors)

In addition, an area of growing importance is the design of experiments employing
electronic tags and the analysis of the results. This area includes the treatment and analysis
of data telemetered through a difficult physical environment from an acoustic transponding
tag. Also, time series of data from DSTs need careful handling related to data quality and
data refinement. In addition to these new problem areas, experiments with electronic tags
are susceptible to the same errors as traditional tagging.

Consequently, the success of any kind of quantitative treatment of data from
tagging - conventional as well as electronic - depends on the quality of the preparatory work
done prior to, in particular in formulating clear, specific goals and setting up a corresponding
experimental design. A proper experimental design is the only way to avoid the numerous
pitfalls and to minimise the effect of the described errors.

Although different problems affect different types of tag or tagging method, the data
from all studies need careful scrutiny before the final analysis is undertaken. The overall
goal of modelling work connected to this process is to control data quality, improve
consistency and fill gaps and holes in broken time series.

(a) Release errors

In order to meet the objectives of any tagging study, it is important to ensure that the release
programme is well planned. Where large numbers of fish are tagged for assessment
purposes, it is important to distribute the releases in the population so that the distribution of
recaptures does not diverge from the general assumptions in the analytical models that are
used. For example, efficient design of the release programme to comply with initial goals
and assumptions might be achieved by combining information about the distribution pattern
of the population with data from the commercial fishery and previous tag recovery records.
Commonly, the rate of exploitation (u) (the fraction of the fish in a population that is caught
at a given time) is assumed to be equal to the relationship between number of recaptures (R)
and marked fish (M):

U=R/M=C/N (7.1)

which again is equal to the relation between the population catch or sample (C) and (N) (see
Ricker, 1975; Burnham et al., 1997 for details). However, it is essential that the distribution
of the tagged individuals in the population does not reduce or increase the probability of
catching marked fish relative to unmarked ones. This can be achieved either by intrinsic
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Year 1 2 3 4
1 R11 R12 R13 R14

2 R22 R23 R24

3 R33 R34

4 R44

mixing of individuals in the population or by distributing tagged individuals in the
population in space and also over time. Special attention has to be paid to sampling when
designing a tagging programme for studying the effects of sea ranching or cultivation in
rivers or lakes (see e.g. Svåsand, 1990; Vreeland, 1990).

In many cases, practical considerations in the tagging phase preclude choosing the
optimal experimental design. Further, incomplete knowledge about the structure of fish
stocks may prevent an optimal release design being created. Commercially important fish
populations, marine as well as anadromous and fresh water species, are often structured both
geographically and intrinsically (by size, year class, etc.). This has to be taken into account
in the design of tagging experiments by distributing the tagged fish proportionally to
geographic and demographic properties of the stock. Numerically this means e.g.

Mij= ΣM (Nij / ΣN (7.2)
ij ij

where Mij is the number of released fish of age i in area j and Nij is the sub population size at
age i in area j. M and N are the total and tagged population sizes. The tagging programmes
on Norwegian spring spawning herring (Hamre, 1989) and Northern cod (Taggart et al.,
1995) are examples of marine stocks where the population structure is taken into account
when designing tagging releases. Some of the problems caused by improper or unbalanced
release design can be compensated for in a thorough sampling of recaptures and will be dealt
with later.

Intuitively, the precision of assessments from tag recoveries will be dependent on the
number of releases. It should, however, be kept in mind that most models rely rather on the
number of recaptures to determine the precision of the estimates. Consequently, based on
actual or assumed recapture rates, simulation studies can be run to estimate the number of
releases needed to obtain a certain precision (Xiao, 1996a).

A special concern is related to the number of releases of electronic tags. High price
limits the number of releases. Also, the size of tags often makes it necessary only to select
larger fish for tagging. In addition, survival may be size dependent (see Chapter. 7). Hence,
particular attention should be paid to the design of such experiments when data are to be
analysed with the aim of supplying information on population or sub-population properties.

(b) Tagging mortality, tag losses

Tagging mortality and tag losses represent a special challenge during numerical
treatment of tagging and recapture data. In most cases capture and tagging are very stressful
for the fish and can affect survival in the tagged population (tagging mortality, Ricker,
1975). More seriously for modelling and calculations, there is a high risk of varying tagging
mortality among releases caused by variation in the capture situation. Fish can be caught at
different depths, under different weather conditions and at different times of year and these
factors may affect their survival. Reduced survival compared to assumptions leads to
underestimates of recaptures and hence rates of exploitation (eq. 7.1) in experiments
conducted for stock assessment purposes.
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Tag loss, by a variety of methods, can seriously affect assessment results from tag-
recapture experiments. Fish can shed tags, and external tags can be lost after becoming
entangled in fishing gears during capture. Further, an external tag may alter the appearance
and/or behaviour to potential predators with subsequent effects on recapture and survival
probabilities (Svåsand & Kristiansen, 1990). If the releases do not satisfy assumptions on
representativity related to the whole population, the recaptures may give misleading results
(Turner, 1986).

In systematic tagging programmes, where mass tagging occurs, for example,
routinely every year, the effects of tagging mortality can be estimated through comparison of
rates of survival during the first and subsequent years. For example, if the rows in the table
below represent the release year and columns the recapture year, an analysis comparing
returns (R) for different tagging groups between different years may give valuable
information about losses due to tagging.

To exploit such possibilities, systematic and long term tagging programs are needed.
Varying fishing mortality and tagging mortality make such approaches difficult in practice.
A special model (Hamre, 1980) was used to quantify variation in tagging mortality from year
to year by means of such information. If the tags are lost due to shedding, predation or other
mortality caused by tagging, the effects can also be studied in so-called "dead recovery
experiments" where information from tags recovered from dead individuals is used in
separated or combined analysis with data from living individuals (Seber, 1970; Lebreton et
al., 1995, Program MARK-http://www.cnr.colostate.edu/~gwhite/mark/mark.htm).

Mortality and tag losses during tagging might also be a serious problem for
experiments designed to study and model fish distribution and migration. Loss of tags has
been studied for a lot of tag types and species through experiments employing tags with
secondary marks. In such tests the fish are doubly identified by a second tag, or by a
combination of marking (e.g. finclipping) and tagging (Ricker, 1975; Xiao, 1996b). Reports
over time give information on rates of tag loss in the experiment. The tagging mortality
might be size and/or sex specific, and thus lead to inaccurate behaviour models. Particular
emphasis should be paid to this problem when data from large electronic tags are used in
modelling. These tags potentially expose the fish to a higher risk of dying due to tagging (e.
g. of health causes), by entangling in fishnets, or by predation. These effects are discussed in
details in chapter 5.

In some cases, the effects of tagging on the behaviour and survival of fish and the
impacts of tag losses on assessments can also be addressed by developing methods that
ignore data or results that are affected. Thus, in the case of tracking studies using electronic
tags, data collected in the first few hours or days might be ignored in any analysis because
the behaviour of the fish may have been affected by the handling or tagging procedures.
Similarly fish can be released sometime prior to the period of interest. For example, in
studies of salmonid smolts passing through estuaries, Moore et al. (1995) caught and tagged
the fish in freshwater days or weeks before they were expected to emigrate through the
estuary. The run-reconstruction model (see Lassen et al., 1988; Potter & Dunkley, 1993;
Rago, et al., 1993) adopts a different approach. By back-calculating the stock size from the
surviving spawning stock, tagging mortality and tag loss, which are believed mainly to occur
soon after release, can be ignored.

(c) Recapture errors

There are two types of errors that can lead to biased or imprecise estimates in
population studies based on tag-recapture data:

Recovery reporting errors - Recaptures are normally reported by commercial
fishermen or obtained in automatic screening systems in association with production lines, or
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special sampling arrangements. Errors may arise from mechanical inefficiency of automatic
registration systems, or from human mistakes in recording position, measuring fish length
etc., or simply by irregular reporting by the fishermen. To minimise the effect of such errors
in the recovery database, simple automatic control routines can be applied when entering
information on, for example:

• position – by controlling/excluding reports from ‘on land’ locations, which
might be processing sites or simply erroneous position records

• time – by controlling/excluding recaptures reported before release or those
resulting in unrealistic migration distance/speed based on the reported time at
large

• size - by controlling/excluding recaptures that give unrealistic length/weight
increments

It is, however, essential that any exclusion or correction of data does not introduce
any kind of bias in the database. For example due to the normally quite imprecise reporting
of stock parameters, a slight negative growth report shortly after release may occur with the
same probability as a similar positive growth.

Assumption errors - Recoveries recorded from catches not representing the
population may seriously bias stock assessment studies based on these data. Similarly, low
quality of catch statistics may introduce serious errors in population estimates, if it is
assumed that the population/catch ratio equals the tag/recapture one. As an example for the
general assumptions needed for modelling, the following are required for to use the Brownie
models (Brownie et al., 1985):

1. the tagged sample is representative of the tagged population
2. there is no tag loss, or it can be accounted for by double tagging
3. survival rates are not influenced by tagging
4. the year of tag recovery is correctly tabulated
5. the fate of each tagged fish is independent of the fate of other tagged fish
6. all tagged fish within a tagged cohort have the same annual survival and

recovery probabilities in a given year
7. the survival and recovery probabilities do not depend on the age of the

animal
8. the forces of instantaneous natural and fishing mortality are additive and

independent
9. natural mortality is constant within a year (no seasonal variation) and

between years
10. fishing mortality for a user group is constant for the period of the year

that the fishery is operating
11. tagging takes place over a short period

(d) Electronic tags

In addition to the errors and problems described above, analyses of electronic tag data
require special attention to quality control and data manipulation. Relatively few tags are
normally released compared to conventional tagging experiments, while thousands of data
points can be collected from each tag instead of just one. When results are scaled up to the
population level it may be difficult to balance the detailed information on the individual level
with the variability shown between tags. In other words, particular attention should be paid
to the number of recaptures when making inferences about population behaviour from data
from individual fish.

The database from electronic tags is particularly vulnerable to technical failures, or
errors, if it is not properly calibrated and controlled. Due to the high value of each
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individual fish, realistic calibration of each tag and sensor is needed. Normally this is done
by the producer, but in many instances it can also be easily tested as part of the tagging
protocol. For example, tags with temperature and depth sensors can be attached to a
Conductivity, Temperature, Depth (CTD) profiler after recording has started and exposed to
realistic fish depths and temperatures before the fish is tagged and released. After recovery
the CTD measurements and the DST recordings can then be compared or contrasted with
original calibration (K. Michalsen, Institute of Marine Research, Bergen, pers. comm.).
Similar procedures can also be applied to returned tags to test for drift in accuracy of
recordings over the whole period for which the tag was at liberty.

DST data can be corrupted as a result of malfunction of sensors occurring
periodically, or at a certain moment during operation. General screening of data is therefore
important and such examinations should consider abrupt, as well as gradual, changes
towards unrealistic values from the sensors.

DSTs are often larger than conventional tags and special attention therefore should be
paid to effects this might have on recapture results. Stress from a higher drag and
entanglement in fishing nets may change behaviour, as well as reduce the number of
recorded recaptures. In such cases double tagging combining conventional and electronic
tagging may be useful (see e.g. Thorsteinsson, 1995).

8.2.2 Assessment of abundance and mortality

Although many tagging studies have been conducted in the past, relatively few such
studies are currently being used in the assessment of European fish stocks, and tagging data
are utilised in only a small number of ICES stock assessments. To a large extent this reflects
the high cost of tagging studies and the difficulty of addressing the problems outlined above.
However, the situation contrasts with that in the Pacific, where tagging is applied much more
widely and is an integral part of assessments of tuna and salmonid stocks. The difficulties of
developing and improving approaches have been exacerbated by the fact that many
assessment studies have only been reported in the grey literature. Nevertheless, examples
exist which demonstrate the applicability of tagging for operational management. For
example, the Norwegian spring spawning herring assessment utilises Virtual population
Analysis (VPA), a common assessment method exploiting commercial catch by cohort as a
basis for quantifying fishing and natural mortalities. For this assessment tag recovery data
are used as an input to tuning the VPA (Anon., 1998). Also, the estimation of exploitation
rates for certain North Atlantic and Baltic salmon stocks in marine fisheries is based largely
on coded wire tag (CWT) or Carlin tag recovery data (Anon., 1991; Anon., 1995a; Anon.,
1995b). Some examples of tagging programmes that have been used to monitor features of
importance to management (e.g. exploitation, population distribution and mixing) are given
in Table 8.1.

(a) Models

Assessment models utilising tagging data are usually developed to estimate stock
abundance and this leads on to methods for estimating mortality (i.e. changes in abundance).
Much literature appears on these subjects, and a range of approaches has been proposed for
improving basic mark-recovery estimates. Ricker (1975) presented an extensive review of
methods to estimate abundance and mortality parameters. A series of approaches are
described, beginning with studies which employ one release of tagged fish followed by
recaptures in a single period (e.g. Petersen method) to models based upon multiple releases
and recapture periods.

Various approaches are proposed for dealing with the biases discussed in preceding
sections (e.g. differential tagging mortality, non-random distribution of tags, etc). Multiple



156

tagging studies may be based upon two (e.g. Ricker, 1975), three (Bailey method, e.g.
Fairfield & Mizroch, 1990) or four and more (Jolly-Seber method, e.g. Kunzlik et al., 1986)
release and recapture periods. There is an extensive literature on the latter group of models,
which has been summarised by Brownie et al. (1985). The method has been used in a wide
range of fishery assessments, including reservoir fish populations (Hightower & Gilbert,
1984) and Pacific salmon (Law, 1994).

There have been other developments to estimate area or fishery based harvesting.
Brooks et al. (1998) have extended models to estimate fishing mortality separately for a
commercial and a recreational fishery harvesting the same salmon stock.

An alternative approach has been developed for estimating levels of exploitation of
Atlantic salmon stocks in sequential fisheries, which operate through their lives in the sea.
These models, referred to as run-reconstruction models, back-calculate the number of fish
from a stock (e.g. a river) that were alive at earlier stages in the life cycle using an estimate
of the returning spawning stock (Lassen et al., 1988; Potter & Dunkley, 1993; Rago et al.,
1993). CWT or Carlin tag studies are used to estimate the numbers of fish removed by
fisheries and hence the levels of exploitation of the extant stock (i.e. all fish of a single
cohort that are alive wherever they are). The run-reconstruction approach has been further
developed, in part using the results from the tagging studies, to estimate the stock abundance
for large stock groupings (e.g. North American and North East Atlantic). It has also been
used to propose preliminary stock conservation limits (Potter et al., 1998, in order to provide
advice to the North Atlantic Salmon Conservation Organisation (NASCO).

In studies of diadromous fish, stocks can often be sampled at more than one point on
their migration route (e.g. when migrating downstream). Similarly, downstream migrants
can be trapped, marked, and then released upstream of the trapping site; they can then be
resampled as they pass the trap site for a second time. This technique may provide an
opportunity for making mark-recapture estimates using the Petersen method, but the estimate
may be biased if both the sampling sites are selective. This problem may be reduced by
employing Schaefer’s (1951) stratification method, which has been used to enumerate
salmon smolt runs from tagging data from the River North Esk in Scotland (Shearer, 1992).
Many tagging studies have been carried out to assess the distribution of various fish stocks
or to estimate the stock composition by origin in different areas. In the case of Atlantic
salmon, the fact that fish from both North America and Europe migrated to West Greenland
was demonstrated by tagging studies (e.g. Anon., 1991), although the composition of the
stock in that area is now determined by scale analysis or genetic methods. Tagging studies
have been conducted on mackerel in the north-east Atlantic to describe geographical
distribution and migration (Iversen & Skagen, 1989). The results of these tagging
experiments have been used in the consultations between Norway and the European Union
to determine the proportion of the stock which should be apportioned to different areas of
jurisdiction, and to distribute quotas by country (S. Iversen, Institute of Marine Research,
Bergen Norway, pers. comm.).

(b) Limitations and problems

Currently, tagging experiments are not extensively used to assess stock abundance or
mortality largely due to the cost and the practical difficulties related to tagging a
representative sample of the stock and obtaining unbiased recovery data. In addition to the
general problems highlighted in Section 8.1, there are specific problems associated with
assessment studies. The major commercially exploited fish stocks are usually very large and
distributed over a wide area. This means that tagging studies require marking very large
numbers of fish on the one hand and on the other that good co-operation is achieved with
fisherman to find and report marked fish (Hilborn & Walters, 1992). In the past, tagging
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experiments have often failed because too few fish have been tagged, or because fishermen
and other members of the industry have been reluctant to report recoveries.

This problem further emphasises the need to ensure that the objectives of tagging
experiments are clearly spelt out and that preliminary modelling is used to determine that
tagging and recovery programmes are likely to generate statistically meaningful results.
Furthermore, it is important to ensure that at least as much effort is put into the tag recovery
programme as the original tagging. This may include extensive advertising of rewards and
explaining to fishermen the benefits of reporting recaptures.

Table 8.1. Examples of tagging experiments being used to assess abundance, mortality
or stock identity of commercial fish stocks

Tagging programmes may also depend upon reliable catch records, for example by
scaling tag recoveries to the level of the recorded catch. In such circumstances it is
important that the catches are reliably reported both in quantity and by location. Otherwise
any conclusions drawn from tagging studies may be similarly biased.

In the case of salmon run-reconstruction models, an important element is the
estimation of the returning spawning stocks. The difficulty of counting upstream migrants in
large rivers tends to limit the use of this approach to smaller systems. These tend to support
stocks which return mainly as one-sea-winter fish and thus make it difficult to obtain
information on multi-sea-winter stock components. Cost effective methods for river
monitoring are therefore required. The approach also depends upon estimates of tag
reporting rates, which can often only be approximated.

8.2.3 Modelling of fish behaviour, movements and migration

Fish populations have over time developed favourable migration patterns, which in
the long term secure advantageous circumstances for survival, recruitment and growth.
Although migration and dispersal is not totally under the control of the individual fish, it is
fundamentally driven by behaviour that puts (or maintains them) in advantageous
circumstances with respect to population survival. However, the movement of individuals in
the same environment will not necessarily be identical and this is an important factor to
consider when developing fishery models based on tagging results. Whilst random
movements undoubtedly occur, fish orientate to a variety of directional stimuli and
dispersion cannot generally be considered as simple diffusion. Movements within a specific
area may be influenced by many factors, which include the physical environment, food
availability, predator avoidance, pollution and so forth.

Tagging method Analysing method Stock Reference Application

Internal /metal Ricker, Jolly –Seber
Mortality

Norwegian Spring
Spawning Herring

Hamre (1989) Results input in tuning of VPA

Internal /metal Western Mackerel Hamre (1980) Migration models

Coded Wire Tag
(CWT)

Run-reconstruction Atlantic salmon Potter and Dunkley
(1993); Rago et al.
(1993)

Estimation of exploitation

Carlin Run-reconstruction Baltic salmon Anon, 1995a (ICES) Estimation of exploitation by
area

CWT Brownie method Pacific salmon Brooks et al. 1998 Estimation of exploitation by
fishery

Carlin Schaeffer Atlantic salmon (Shearer, 1992) Estimation of smolt runs

External New exploitation
models

Northern cod Myers et al. 1994, 1996 Exploitation,
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Modelling of fish behaviour, movements and migration has to a great extent been a
theoretical exercise, which tries to synthesise available knowledge and information into a
dynamic framework. Because of the very manifold nature of biological processes in nature
and the complex interaction between fish and their physical and biological environment,
such models become complex and dependent on difficult parameterisation and/or strong
assumptions. Such models often suffer from lack of realism because of a lack of adequate
data. As a result they are often only used for simulation purposes rather than as operational
tools for fish stock assessment and management. This type of modelling suffers further from
a lack of understanding of the basic biological processes and motivation behind fish
movement and the dynamics in these processes. Recent technological developments
including new electronic tags, new software and faster data processing capabilities have
opened new possibilities for filling these gaps. There is, however, a demand for new
analytical approaches which are constantly being developed and modified according to new
achievements in technology and knowledge. These may in future improve the interaction
between theoretical developments and practical application. For example the use of multiple
tag types or combined methodologies may be necessary to fully develop models for future
fisheries applications.

8.2.3.1 Large scale models

Large-scale models refer here to approaches that cover broad scale movements of
populations without emphasis on individual behavioural patterns. Significant contributions
to our understanding of large-scale fish migrations have come from conventional tag and
recapture experiments. With improvements in electronic devices, and particularly the fast
evolving utilisation of data storage tags (DST), a much larger quantity of data on
individually tagged fish has now become available which can be related to the position of the
fish. These tags are now commonly used for fish migration studies. However, the quality of
the data generated from all electronic tags should be assessed and the suitability of analytical
procedures critically examined.

Apart from general analyses of tag recoveries and related data, there are two major
categories of mathematical models that are applicable to the study of large scale animal
movements - here called differential diffusion models and random walk models (Okubo,
1980). The main difference between the two methodologies is that the first add parameters
to the equations, making them larger and more complex. These models consider entire
populations. Probability models, on the other hand, modify the existing probabilities as a
function of multiple interactions.

(a) Differential diffusion models

This category includes models that use differential calculus to solve diffusion
equations. Joseph & Sender (1958), Ozmidov (1958), Bowles et al. (1958) have developed
the theory of diffusion based on differential calculus. Only Ozmidov’s solution is suitable
for describing oceanic diffusion.

Salvado (1993) developed an approach to the understanding of animal motions and
migrations from the empirical Green Function. This was based on the development of a
point source solution of the differential field equations resulting in a one parameter model,
which would be applicable to fisheries simulations based on tagging results.
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(b) Random walk models

This group of models is based on probability functions. Despite their implicit
insensitivity to environmental conditions, they are used in fisheries assessment (Jones, 1959,
1976; Mullen, 1989) to describe fish dispersion and local population dynamics (Okubo,
1980).

To add realism and a more directional spatial displacement to diffusion models based
on probability functions, there has been an effort to incorporate into their design ecological
controlling functions in the form of spatially-explicit and temporally articulate probability
distributions (DeAngelis & Yeh, 1984; Marsh & Jones, 1988). Introduction of these
“biased” rules to modify movements of fish implies complex decision-making on the part of
the organism. In fact, some of these more sophisticated probability models can produce
accurate simulations of an organism’s response to heterogeneous environmental conditions
(Saila & Shappy, 1963; Kareiva & Shigesada, 1983; Pulliam et al., 1992). Schaefer et al.
(1961) and Bayliff (1979) have described approaches based on quantitative analyses. These
analyses which use measures of directional and random movements developed by Jones
(1959, 1976) are suitable only for random or simple directional movement.

Darroch (1961) and Arnason (1972, 1973), in their statistical works on analysis of
movement data, examined spatially stratified capture recapture models, but under the
condition of multiple recaptures. A limitation in these studies is the assumption of equal
probability of the capture in all areas, which is unlikely considering the nature of commercial
fisheries where tag recoveries are made.

Burnham et al. (1997) considered traditional models and approaches of mark-
recapture studies on spatially structured problems with unequal fishing effort in the spatial
strata. Adopting a Markovian movement model, Ishii (1979) simulated the movement of
tagged fish and used non-linear minimisation techniques to determine the movement
probabilities that optimise the difference between observed and expected number of
recoveries in each spatial area. Ishii’s model included parameters such as natural mortality,
and tag shedding. Later Sibert (1984) included natural mortality, fishing mortality, and
movements between two countries in his analyses, which used tagging data to determine
mortality rates and exchange rates between the two countries. Ishii and Sibert used the
method of the least squares to estimate the parameters involved in their models.

Schwartz (1988), and Schwartz & Arnason (1990) described the extension of this
approach to the statistical analysis of mark-recapture data, using explicit multinomial
probability functions. Movements of fish were calculated from differences in stock
structures between censuses by Schnabel (in Ryan, 1990) using multiple-mark-recapture
studies. Hilborn (1990) developed a model that adopted the maximum likelihood method
based on the Poisson distribution and presented a general method for the analysis of
movement data from tag returns. This method was based on an extension of the generalised
linear model approach adopted from Cormack (1981).

Mullen (1989) suggested combining differential and probability models by using an
approach based on the variable coefficient of diffusion model, in which the local
environment affects local population dynamics by creating unique diffusion coefficients for
each spatial co-ordinate. Mullen’s coefficient of diffusion was based on a simple bio-
economic model taken from Clark (1985). With the inclusion of this coefficient of diffusion,
many variables such as the foraging mechanism can be included in the model.

8.2.3.2 Small scale behaviour models

Behavioural models can be considered on a smaller scale than migration models as they tend
to describe more localised movement. Computer simulations can provide a good approach
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for stochastic investigation of animal movements. These simulations require an abstraction
of actual animal motion into certain elements, for instance, speed, direction, activity, and rest
periods, and an evaluation of the statistical distribution of each of these processes. For this
purpose, the assumed relations may be based on actual data, or on theoretical considerations.
The required distributions and algorithms can then be programmed into a computer to
simulate animal motion. The result is then compared with data to test the applicability of the
model; if necessary the model can be modified.

Various forms of animal movements have been described (Fraenkel & Gunn
1961which can be simulated. These are:

• Orthokinesis - movement in which step length is a function of the stimulus
intensity.

• Klinokinesis: - the probability of an animal changing its direction in the
space.

• Tropotaxis: directed movement on a stimulus gradient,
Other processes influencing population ecology (growth, death, predation,

competition, etc) can be added to develop a more complete model of fish behaviour. A
number of models have been developed but they have normally no direct reference to
tagging and will thus not be dealt with in any detail here (an overview with references is
given at the CATAG web site http://www.hafro.is/catag). These models facilitate simulation
based on modelling of various kineses and taxes and demonstrate potential individual
movement in a variable environment based on motivation and behavioural features (see e.g.
Rohlf & Davenport, 1969; Neill, 1979; Okubo, 1980).

The development of sophisticated electronic tags and telemetric procedures allows
for tracking of individually marked animals. Coupled with simultaneous measurements of
environmental factors and physiological data there is an inestimable potential for discovering
important processes affecting fish populations. The fact that many individuals may be
tracked simultaneously may improve the quality of the results and lead to better
reproducibility. Thus, new electronic tags can become important in validating and
developing the theoretical modelling summarised above toward the development of
important scientific and management tools.

Keleher, et al. (1985), carried out radio tagging to study the behaviour and
movements of Pacific salmon species in relation to environmental influences and used the t-
test to compare movements between species. Separate regression analyses were also
developed to relate daily distance travelled to the cumulative precipitation (an indicator of
stream flow) of a lake system.

Binkley (1976) presented several mathematical techniques for examining circadian
rhythms data that allow the significance of a periodogram peak to be tested. These include:

• Average curves
• Enright’s formulation of the Whittaker periodogram
• Autocorrelation
• Power spectral analysis

In order to establish circadian characteristics, Schulz and Berg (1992) applied the x2

periodogram test (Sokolove & Bushell, 1978), based on Enright’s method (Enright, 1965) to
analyse the daily activity data derived from ultrasonically tagged brown trout in Lake
Constance, Switzerland. The coherence of barometric pressure and migration activity was
tested with general linear models. Additionally, mean swimming activity, swimming depth
and temperature were calculated for day (light intensity > 1 lux) and night (light intensity <
1 lux), and tested with t-tests. Swimming activity during the day (foraging behaviour) was
significantly higher than at night in most experiments. Cyclic features in fish behaviour data
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such as diurnal and tidal patterns have also been studies with circular statistics by e.g.
Batschelet (1981) and Moore and Potter (1994).

Greer Walker et al. (1980), Arnold et al. (1994), Arnold & Holford (1995), Arnold &
Metcalfe (1995), have studied migratory behaviour of fish in the North Sea by means of data
from electronic tagging. A variety of behaviours shown during the tracking suggests some
kind of cues or clues to which the fish might respond under different conditions (Arnold &
Metcalfe, 1989; Arnold et al., 1994). Direct observation of behavioural pattern of plaice in
relation to tidal current by means of acoustic tagging experiments, initiated development of a
migration model using tidal stream vectors calculated from the British Admiralty tidal data.
The basis for the approach was obtained by observing the heading of the fish and its speed
through the water compared to measurements of tidal stream vectors made with current
meters (Arnold et al., 1994). By using vertical migration data from data storage tags Arnold
& Holford (1995) were able to predict the rates and scale of horizontal movements and
demonstrate that the model is able to estimate the recapture position of the tagged fish with
remarkable precision in some circumstances. This work might serve as an example of the
potential success by combining information from new electronic tags with physical models
in testing behaviour and migration hypothesis.

Migratory behaviour of fish results in temporal changes in the spatial distribution of
biomass and is influenced by prey availability, vulnerability to predation, accessibility to
fishing gear, and exposure to environmental conditions. The migration route may vary from
year to year in response to changing climatic conditions, or environmental factors. The
influence of the environment on the fish behaviour has been discussed by Harden Jones
(1968), Laevastu & Hela (1970), and Neill (1984). Random walk models have been used in
order to model simple movement of fish. DeAngelis & Yeh, (1984) used a biased random
walk adopting a hypothetical oceanic coastal region, with environmental heterogeneity built
into the model to simulate a realistic situation.

8.2.3.3 Limitations and problems of tagging studies

(1) The general lack of an experimental design is a serious deficiency in many tagging
surveys; it can undermine the relevance of the data collected and the analytical
procedures

(2) The number of fish to be tagged is often based on economic considerations rather
than on the basis of ensuring good representation. This has a direct bearing on the
type of analyses that can be performed and the confidence limits that ca be achieved

(3) Release times and conditions are difficult to standardise in tagging studies.
(4) Many studies incorporate the results of all recaptures regardless of how much time

has elapsed since the release of the tagged animals. There can be problems in
interpretation of recovery data from fish that have been at liberty for different
periods of time

(5) The influence of environmental factors on tag recoveries and return rates is poorly
understood

(6) The availability of data for analyses can be affected by the rate of reporting of
recaptured fish by commercial or recreational fishermen

(7) Results can be seriously confounded by even slight uncertainty in recapture data,
lapses in time series, misclassification or mis-reporting of information

(8) Data interpretation from DST tags can be compromised by local events (e.g.
localised temperature effect) or anomalies, which make comparison with data from
other sensor sources with different resolution less accurate

(9) Specific problems arise with the application of electronic tags that may be affected
by radio or acoustic interference
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(10) Data quality problems caused by environmentally induced background noise or
disturbances

8.2.4 Review of analytical methodologies used for other animal groups

Tagging studies of migration and behaviour are not exclusive to fish and many
applications developed for other species have been and can be adapted for fisheries related
work. Models have been developed describing the behaviour of seals, birds, turtle, sharks,
insects and mammals and there are many novel analytical approaches, which may be
applicable to fisheries studies. A significant number of computer simulations are available
particularly for studies relating to animal behaviour which could be adapted for fish
behaviour.

There are several examples of experiments on other species that have been adapted
for fisheries work. Dodson & Dohse (1984), for example, adapted a model of directional
bias based on olfactory mediated conditioning to study the homing behaviour of American
shad (Alosa sapidissima) in the Connecticut River.

Random search has been proposed as a possible mechanism for homing. Whilst a
completely random search would appear to be unlikely as a factor in homing, the possibility
has been examined by a number of workers. Wilkinson (1952) first demonstrated that
random search explained some observed phenomena associated with bird homing. Since
then Jones (1959) and Saila & Shappy (1963) have proposed the idea that random search
combined with a small amount of directional orientation (possibly of olfactory nature) can
theoretically provide reasonable homing results in fish. Wilson & Findley (1972) showed
that experimental data on bat homing could be interpreted in terms of the random search
hypothesis. All of these studies suggest that random search cannot be excluded as a possible
homing mechanism.

Movements of animals within the home range can be considered to be a stochastic
process in space, as for example a random walk. However, the walk is not purely random
but it must be regarded as a biased walk (Holgate, 1971). That is, the probability of taking a
step toward the centre of activity of the home range is greater than moving away from the
centre. This kind of random walk, is called centrally biased (Okubo, 1980).

In a random walk, movement is assumed to be discrete. In the limit of increasingly
smaller steps, however, the differential equation for probability becomes a generalised
diffusion equation describing continuous movement. Then, in the limit, the discrete equation
converges to the following equation:

∂∂∂∂ S ⁄⁄⁄⁄ ∂∂∂∂ t = ωωωω 2⁄⁄⁄⁄ k ∂∂∂∂ ( x S ) ⁄⁄⁄⁄ ∂∂∂∂ x + A2T ⁄⁄⁄⁄ m2k2 ∂∂∂∂ 2S⁄⁄⁄⁄ ∂∂∂∂ x 2 (8.2.4.a.3)

called Fokker-Plank’s equation for the Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein,
1930; Wang & Uhlenbeck, 1945). Both equations consider the same concept, but the
differential one is much more convenient to handle analytically.

Dunn & Gipsen (1977) and Dunn (1978) have proposed a multivariate centrally
biased diffusion process as a useful model for the study of home range. The model is
characterised in terms of some typical descriptive properties of home range, such as activity
centre, activity radius and distributions of turning angle and displacement. An extension of
this approach was carried out to test for territorial interaction between two or more
individuals in the case of deer, coyote and birds using telemetry data (Okubo, 1980).

Siniff & Jessen (1969) simulated the movement of an animal in its home range on the
basis of telemetry data for red foxes (Vulpes fulva), snowshoe hare (Lepus americana), and
raccoons (Procyon lotor). The telemetry data were obtained from the University of
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Minnesota’s Cedar Creek automatic tracking system, which continuously monitors the
movements of animals carrying miniature radio transmitters (Cochran et al., 1965).

Korschgen et al. (1996) used radio-tracking data to investigate the magnitude, timing,
and causes of mortality of the canvasback duckling (Aythya valisineria) from hatch to
fledging at the Agassiz National Wildlife Refuge (NWR) in north-western Minnesota. The
survival rate was estimated with the Kaplan-Meier non-parametric estimator (Kaplan &
Meier, 1958) and the Weibull survival parametric model. The resultant plots of log{-log[S
(t)]} against log (time) from the Kaplan-Meier procedure were generally linear, indicating
that a Weibull survival model would adequately fit the data. The LIFETEST module of SAS
(SAS Inst. Inc., 1989) was used to fit the Kaplan-Meier curves and the LIFEREG module of
SAS (SAS Inst. Inc., 1989) was used to compute estimated parameters of the Weibull
survival model. In general, parametric models provide more precise estimates of survival
(Miller, 1983; Klein & Moeschberger, 1989).

Otis (1994), in his studies on wood duck (Aix sponsa) populations, developed a
statistical methodology for computing optimum allocation of banding effort to examine
which two banding periods per year were more appropriate.

French and Reed (1989), French et al. (1989) developed a simulation model of
seasonal migration based on daily movements of fur seal (Callorhinus ursinus). This
migration model is useful both in understanding the movements of fur seals and in
identifying where they are vulnerable to impacts following interaction with the results of
man’s activities. The model has been used to estimate impacts resulting from hypothetical
oil spills in the Bering Sea. The model could also be used to estimate impacts of other
localised pollutants or entanglement in marine debris. VHF, ultrasonic tags and satellite-link
transmitters have been used to study distribution and movements of grey seals (Hammond et
al., 1993). System Argos provides access to information on the location of the transmitted
signals and their quality, and any other data that have been transmitted. Information on
locations and tracks is cross-referenced to other data to indicate periods of foraging and other
behaviours (Thompson et al., 1991).

8.2.5 Population parameters and species interaction

Populations are susceptible to changes in their physical and biological environment
that may affect their productivity. Climatic changes my lead to variation in stock parameters
and the appearance and disappearance of prey and predator species - caused by man or
nature - may profoundly affect harvest levels. Representative pictures of these variations are
difficult to monitor, and tag-recapture programmes might in future improve studies,
particularly if new technology is fully utilised.

(a) Population parameters

During the past 30 to 35 years, much literature has appeared on the estimation of
population parameters based on capture-recapture sampling. Burnham et al. (1997) has
considered the general theory for the analysis of multiple interrelated release-recapture data
sets. Starting from statistical concepts, they have considered the following relevant points:

• protocols for studies with a control and one treatment
• theory for studies with two or more treatments
• the importance of replication
• the properties of procedures
• the importance of planning the experiments

Burnham et al. adopted Maximum Likelihood Theory to estimate survival rates,
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components of variance, and non-linear regression to estimate values for the Von Bertalanffy
model of growth parameters (Green et al., 1990).

The dispersal of animals can be classified as random dispersal or density dependent
dispersal, which is particulalry important in relation to population dynamics (Ito, 1975). The
relationship between animal dispersal and population density has been studied extensively
with insects (Okubo, 1980). Morisita (1950) ascertained a relation between animal dispersal
and population density in natural populations of water striders. Similar relations were also
recognised in experiments with aphids (Ito, 1952) and rice weevils (Kono, 1952), from
which it was concluded that for each species there is an associated population pressure that
enhances population dispersal. Later Morisita (1954) attempted to quantify this population
pressure by experimentally releasing ant lion larvae (Glenuroides japonicus) from a point
and observing their dispersal. The movement pattern of individuals was classified as one of
two types:

• individuals which dug holes in the vicinity of the realise point (normal
individuals)

• individuals that dug holes after having travelled large distance from the release
point (abnormal individuals)

Morisita’s empirical formulae appear to be of general applicability in describing the
time variation of the variance for insect dispersal from a point source and may possibly be
applicable to fish under some circumstances.

The relationship between population density and dispersal behaviour is significant
when viewed from the standpoint of social processes in communities (Ito, 1961) and
Andrewartha and Birch (1954) also assign great importance to dispersal as a reaction to
crowding. Overpopulation does not necessarily lead to dispersal, however. A unique
characteristic of the Regional Organism Exchange (ROE) model (Reyes et al., 1994) is the
combination of the migration equation with more classical population parameters (Hardin,
1960).

(b) Interaction between species

It is well known that in a real ecosystem the importance of interactions between all the
species cannot be overlooked, in particular in the case of predator-prey relationships. One
method to estimate the various contributions of stock compositions to multiple and mixed
stock fisheries is to measure differences in natural biological characteristics such as age
composition, egg diameter, and parasites. Mark-recapture studies can also provide
information on the stock composition of the catch. Monte Carlo methods are adopted to
evaluate changes in variability and bias caused by changes in tagging rate, catch sampling
rate, catch level, stock abundance in the fisheries, and distribution of stocks across fisheries.
The overall variability in the Monte Carlo estimates can be surprisingly high and depend
principally on variation in tag recovery and distribution of probability of harvest across the
species and catch strata.

Random walk models do not normally take into account interactions between
individuals and species (Schwarz & Poland, 1975), although exceptions exist (see e.g.
Shigesada & Teramoto, 1978). This mathematical model of advection and diffusion can
explain the spatial distribution of animal populations that are principally controlled by
interference between individuals and other environmental conditions. The formulation is
based on the assumption that animals move under the influence of the following fundamental
forces:

• a dispersive force associated with random movement of animals
• an attractive force, which induces directed movement of animals toward

favourable environments
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• population pressure due to interference between individual animals
The DYNUMES model of Pola (1985) is a numerical simulation model of fish

migration in the eastern Bering Sea. This multi-species, numerical ecosystem simulation
model has a spatial resolution of 63.5 km. Migrations are simulated by redistributing the
biomass over the grid and primed by biological and environmental factors such as
temperature. In this model the redistribution of biomass for both types of migration is
computed using a finite difference advection equation (Laevastu, 1976).

8.3 REQUIREMENTS AND RECOMMENDATION

8.3.1 Experimental design

(a) Release errors

Representative distribution of tags in the population is essential for stock assessment
studies. This can be obtained either by mixing of tags through migration and movements or
through a systematic design for the release program. The extent of the problem may be
species or stock specific and thorough population studies are needed for designing proper
tagging experiments

Recommendation: Work is required to develop and use methodology (e.g. simulation
studies) to optimise the design of tagging experiments. The goal is to achieve an
unbiased estimate with a specified level of precision.

(b) Tagging mortality, tag losses

Variations in tagging mortality rates and tag losses can seriously bias population
studies and should be taken into account in data analysis. Tagging methods that have less
effect on the health and behaviour of the fish are desirable.

Recommendation: Experiments should be undertaken to identify the effects of tagging
on fish before undertaking large-scale tagging operations. Development of tagging
methods less harmful for the fish (e.g. underwater tagging) is required.

(c) Recapture errors

Full and precise information on the recaptures is required to achieve the desired results.
Most assessment models rely on detailed catch statistics to upgrade recapture results to
population estimates.

Recommendation: Tagging programmes should be widely advertised. The validity of
recapture data should be controlled by developing and using control routines in the
recapture database. Improvements should be made to the precision of catch statistics
used in conjunction with tagging data.

8.3.2 Requirements related to assessment of abundance and mortality

(a) Mass tagging

The precision of the assessment results obtained from tagging studies is dependent
mainly upon the number of tags recovered. One way to improve precision is therefore to
increase the number of tagged fish released, but this may increase the costs of the
programme unacceptably. Clearly, the development of alternative methods for mass-
marking large numbers of fish, preferably with less effect on individuals, would be
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advantageous. Mass marking (adipose finclipping and/or coded wire tagging) of salmonid
smolts has been shown to be practical with the recent development of an automatic smolt
tagging machine (http://www.nmt-inc.com).

Recommendation: Consideration should be given to the development of mass marking
methods to achieve more precise population assessments. The use of genetic and
chemical marks, which may be introduced, or which may occur naturally in populations,
should also be considered.

(b) Recovery

In the past many studies have underestimated the importance of maximising the
recovery of tagged fish.

Recommendation: The development of new marking methods must clearly give
considerable attention to optimising recovery programmes and to methods of improving
public awareness of the benefits of such programmes. In the case of genetic and
chemical marks, it may be possible to develop mass-screening methods.

(c) Guidelines for modelling

Whilst there is an extensive literature on modelling and assessment methods, there is
no up-to-date and user-friendly guide to recent developments in the field.

Recommendation: The preparation of guidelines on theoretical approaches and
assumptions in modelling would encourage the use of modelling methods in stocks
assessment and help to ensure a higher standard of work in many areas. Such guidelines
should include advice on the use of sensitivity analyses in developing project proposals
and analysing results.

(d) Catch statistics

Catch statistics provide a major input to many models and particular efforts are
therefore required to ensure that these reflect, as accurately as possible, the true size and
distribution of fishing mortality and landings.

Recommendation: Work is required to further assess methods for estimating the
accuracy of reported catch data and levels of non-reporting.

(e) Freshwater survey methods

Assessment modelling for fish stocks in freshwater may be restricted by the
difficulties of surveying large river systems. In the case of salmon this makes it difficult to
model stocks which have a high proportion of multi-sea-winter returns. Studies of species
that only occur in large systems (e.g. sturgeon) or that have different types of populations in
rivers of different sizes (e.g. salmon) are desirable.

Recommendation: More work is required to address the problems of surveying fish
stocks in large rivers utilising the potential of modern tagging techniques.

(f) Population structures

In the past, many assessment methods have ignored the effects of population and sub-
population structures. However, there is an increasing awareness that such structures may be
important in the biology of certain species.
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Recommendation: There is a need to conduct genetic and other studies to describe the
role of population and sub-population structure for particular species.
Modelling of fish behaviour, movement and migration.

8.3.3 Modelling of fish behaviour, movement and migration

(a) Cost efficient development

More extensive international co-operation is needed both to avoid repetition of
experiments that have already been already done and to promote wider programmes of
research to obtain global results. The establishment of a Web Page within this field could be
a useful development.

Recommendation: Develop an international network to co-ordinate effort within
modelling in tagging through a Concerted Action and/or development of a Web Page
solution (e.g. through further development of the CATAG Web Page).

(b) Model validation and experimental design

Recommendation: Existing models need to be reviewed and sensitivity analyses carried
out to establish the range of accuracy of models based on tagging programmes,
particularly where specific fishery advice is being given (ICES, NASCO, ICCAT etc.).
Experimental design must take specific analyses and models into account.

(c) Migration and behaviour

Data storage tags provide large amounts of information on the behaviour of
individual fish and their immediate environment. Such data can fuel the development of a
new generation of migration and behaviour models, which have great potential for
improving stock assessment and management.

Recommendation: Encouragement should be given to the development of individual
behaviour based models using information from well-designed data storage tag
experiments, integrated where possible with data from traditional mark-recapture
experiments.

(d) Pollution – migration and behaviour

Knowledge about effects of pollution on fish behaviour, migration and mortality is
scarce. In future such information will be important for evaluating the impact of pollution
on fish stocks.

Recommendation: Dedicated models describing the behaviour of populations in relation
to pollution need to be developed as a tool for monitoring effects of pollution on marine
life and as a way of predicting potential impacts of large-scale marine developments
prior to their establishment.

(e) Data Fusion

Electronic tags can provide environmental, geographical, and physiological
information regarding the fish and its environment. Electronic tags, in particular DSTs, can
offer data on the dynamics of physical processes that are fundamental to studies of migration
and behaviour. Environmental monitoring and modelling approaches to treat such data are
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well established. Methods which co-ordinate and integrate data from tagging and
environmental data in a systematic and coherent way (data fusion) are essential to exploit
existing models, develop new approaches and maximise the benefits of expensive tags. Such
work will also be important for geographical positioning of tagged fish in a monitored
environment.

Recommendation: Develop methodology for data fusion as tool to derive maximum
benefit from electronic data storage tags. This requirement applies to environmental
data (e.g. temperature, light, primary productivity, ocean currents) obtained from
satellites, marine surveys, observation buoys or by other means.
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9. FUTURE

9.1 PERSPECTIVES

Tagging is a long-established tool in biology, and is economically valuable for
European aquaculture, fish husbandry, stock assessment and fisheries management, as well
as for commercial enterprises that provide tag technology. Traditional methodology is
dependent on catching and handling fish before release and recovering a proportion of the
tags through commercial and recreational fisheries. Challenges to the use of these procedures
include substantial uncertainty about the survival and welfare of the fish and recovery of
reliable data. There are also doubts as to whether data obtained from a relatively small
number of individuals are representative of the population at large. Quantitative use of
tagging data therefore requires a set of assumptions, which are difficult to control.
Technological, biological and mathematical developments considered in this Concerted
Action will help to meet these challenges. In any case, it should be recognised that tagging
can provide assessments that are independent of many of the serious problems associated
with other methods. Tagging is also an obvious tool in aquaculture and ranching
programmes, where strict control of the cultured population is essential to avoid adverse
affects on natural populations.

Investment in new development has been limited, probably because of the
uncertainties associated with traditional tagging methods. Electronic tag technology
generally has a limited market due to restricted application of this technology to date. Public
funding and pre-market investment are therefore essential to rapid and sustained progress.
Modern technology has already opened up exciting new possibilities by developing: (a)
sophisticated electronic tags which can collect large amounts of data on individual fish over
long periods; (b) small ‘smart’ tags for mass tagging; and (c) automatic tagging techniques,
which may remove substantial uncertainty connected with fish survival and welfare. Because
of the pace of technological developments in IT, microelectronics and nanoengineering, it is
impossible look beyond a technical horizon 3-5 years away. As discussed in the previous
chapters, the full potential of these new developments has yet to be recognised. Despite this
under-utilisation, these techniques already have the potential to collect information far more
economically than is feasible by conventional means. To elevate tagging to the status of a
reliable and recognised tool for collecting quantitative fish population assessment data, as
well as detailed biological and behavioural information, an integrated and aimed investment
programme is needed over a period of at least 5 years. Retention and expansion of the
tagging network established during CATAG is also highly desirable for maintaining
momentum, ensuring efficient utilization of limited development costs, and establishing
technological standards in this field. From a European perspective it should also be noted
that tagging is much more widely employed in northern Europe than in southern Europe or
the associated Atlantic islands. Positive action is needed to encourage tagging initiatives in
these southern ecosystems.

9.2 RECOMMENDATIONS/REQUIREMENTS

CATAG participants have identified many areas of tagging applications, methods and
technologies that need stimulation and financial support. The following recommendations
have the highest priority. More detailed recommendations may be found at the end of each
of the chapters produced by the four working groups.
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9.2.1 Communication and training

• The CATAG website should be maintained and developed, as an educative as
well as a research tool. This will require funding, and it is recommended that
the EU considers means by which this support might be provided

• Workshops are needed to encourage exchange of ideas amongst
oceanographers, fisheries biologists, engineers and veterinary scientists

• Practical training courses for fish tagging, handling and anaesthesia are required

9.2.2 Technological improvements

• Data storage tags need more memory and longer life; PIT tags need more range.
Sensors need to be smaller and able to measure a wider range of variables
(including physical data such as compass heading, tilt angle and acceleration
and biological parameters such as growth and feeding rates and blood hormone
levels)

• More reliable methods of estimating geographical position for fish fitted with
data storage tags are urgently required. Indirect methods (e.g. sequentially
released pop-up tags) and direct methods (e.g. geomagnetic sensors) need to be
investigated, further developed and tested

• Automated mass tagging and in situ submerged tagging (especially for deep-
water fish) are both highly desirable technologies requiring further development
to improve efficiency and quality of assessments

• Development of tags to collect information about feeding rates and prey
preferences for fish predators should have a high priority as part of developing
an ecosystems approach to fisheries management

9.2.3 Biological improvements and fish welfare

• Evaluation of the effects of capture stress, handling and pre-release treatment of
tagged fish, together with systematic study of the effects of tags upon fish
behaviour and swimming performance should be given a high priority

• Tagging methods, including use of novel anaesthetic procedures (e.g.
hypothermia), should be evaluated and optimised. New techniques should
ideally be preceded by effective feasibility studies

• Improvements in anti-fouling and anti-inflammatory performance of tag
materials are needed

9.2.4 Data collection, handling and modelling

• It is recommended that user guidelines be established for theoretical approaches
and assumptions in modelling. Clarification and quantification of underlying
assumptions in quantitative application of tagging data (e.g. about tagging
mortality, tag shedding, mixing of tagged and untagged populations) is required

• Development of techniques of data fusion (combining data from tags, scientific
surveys, fisheries and environment [GIS systems]) should have a high priority.
Further, encouragement should be given the use of this type of information for
the development of individual based models in fisheries science
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9.2.5 Legislation

Tagging for husbandry should be removed from legislative control and not require
expensive and unnecessary training of operators. EU harmonization of legislation and its
implementation is highly desirable.
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10. THE CATAG WEBSITE (http://www.hafro.is/catag)

10.1 WEBSITE FUNCTIONS

10.1.1 To reflect the work of the CATAG group

The CATAG group collaborated for 30 months with the objective of improving
methodologies used in tagging experiments for use in fisheries research and fish stock
assessment. The results have been disseminated in reports to the EU, a special scientific
report for publication and the website http://www.hafro.is/catag which provides access to
all of this material (including the final report in html form).

10.1.2 To provide practical information on tagging or marking of fish

The participants in CATAG have considerable expertise in all aspects of tagging,
reinforced by their network of European colleagues and collaborators. This information has
been categorized and made available on the website. CATAG participants have used their
knowledge to disseminate practical instructions in easily accessible form. In addition, users
of the website are provided with access to details of commercial equipment suppliers,
usually reached via hyperlinks.

10.1.3 Provision of tools for scientists using tagging experiments for fisheries research

Several databases and collated sources of information are mounted on the website
with the express intention of facilitating scientific research. These include descriptions of the
most-frequently used mathematical models that incorporate results from tagging
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programmes. There is also a database of ongoing tagging experiments to help researchers
avoid duplication and seek cooperation. Detailed evaluation of anaesthetics and surgical
procedures employed in the use of electronic tags is given in the Welfare database.
Legislative implications of tagging work with fish are considered on a country-by-country
basis to ensure that scientists are aware of their legal obligations.

10.1.4 To provide a communication platform or pathway

The website includes a database of contacts, made up of a list of people who have
been connected in any way with the CATAG project or its website. This growing list is in
the form of an ORACLE database located at, and supported by, the Marine Research
Institute at Reykjavik. The database can be searched for institutes, names of contacts,
communication details and fields of scientific interest. There is an entry form attached to it
so that new contacts can be added at any time. On the website there is also a conference
board which permits on-the-Web discussions.

10.1.5 To educate

The WorldWideWeb is now an established teaching medium with no rules about
who may access it or download material from it. The CATAG website delivers publicly
available information that may be used by schoolchildren, tertiary students, professional
fishermen, amateur anglers, legislators or expert researchers alike. Some of the information
may also be useful to scientists for whom tagging itself is of marginal interest. However, a
particular educational requirement is that those who become involved in tagging
programmes should first undergo training (this is already a legal requirement in some
countries within the EU as far as fish welfare is concerned). The website provides a good
forum for the organisation of such courses and has much relevant study material online.

10.2 WEBSITE STRUCTURE

The web-site structure is self-explanatory to those who access and browse it, but a
brief overview of its features is given here. Below is a hierarchical list of headings and
heading subdivisions that outlines the structure of the web-site:

About this web-site
What this web-site provides
About the CATAG project
Responsibility
Construction

Tags and tagging
Tag and mark types

External tags
External marks
Internal tags
Internal-external marks
Electronic Tags
Genetic Marks

Tagging methods manual
Some descriptions of tagging methods

Applications, analysis and modelling
General concerns
Applications
Data analysis and modelling

Database of tagging experiments
Entrance page for survey and survey-database

Search
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Submit a form (questionnaire)
Help on filling out the form/questionnaire

Search facilities for recaptures
Entrance page for search facilities (Tags released - by institutes)

Recommendations made by the CATAG-group
Future scenario and recommendations (From chapter 9 final report)
Recommendations from group A, working on conventional tags and tagging
Recommendations from group B, working on electronic tags and tagging
Recommendations from group C, collecting information on legislation in Europe
Recommendations from group C, working on welfare of fish on tagging experiments
Recommendations from group D, working on data analysis and modelling

Legislation concerning tagging or marking of fish
Legislation and tagging (from chapter 6 in final report)

Contacts
Project participants.
Contacts. (A database of names of scientists and institutes who have been in contact with
CATAG project).

Contact database - entrance page
Search
Add a new contact
Help

Producers and suppliers
Producers and suppliers in the field of tagging or marking

Health and welfare
Health and welfare (of fish in tagging or marking experiments)

Health, behaviour and welfare documents (from CATAG report)
Tables of results from studies
Database on welfare

Reference section
Reports of the progress of the CATAG-Project (1997-2000)

i) Abstract of the Midterm Report May 1998
ii) Consolidated Midterm Report May 1998
iii) Final report of CATAG to the EC, Abstract (Downloadable)
iv) Final report of CATAG to the EC, Executive summary
v) Final scientific report of CATAG to the EC (Downloadable)

Some international reports and presentations of interest
i) International Council for the Exploration of the Sea (ICES), papers and reports.
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E-mail: nomaoileidigh@marine.ie.

Mr. Tapani Pakarinen,
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11. Annex 1: Alphabetical list partners in FAIR CT.96.1394 CATAG
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E-mail: johannes@veidimal.is.
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Tel: +45 33 96 33 94
Fax: +45 33 96 33 33
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Mr. Vilhjalmur Thorsteinsson,
Marine Research Institute,
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Telephone: +354-552 0240,
Telefax: +354-562 3790,
E-mail: villi@hafro.is.

Dr. George Tserpes,
Institute of Marine Biology of Crete,
P.O.Box 2214, 71003 Iraklion, GREECE.
Telephone: +30 81393298,
Telefax: +30 81241882,
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