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Fish movement vectors and the temperature gradient:
A geometric analysis method for the depth–temperature time
series from data storage tags
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The problem of how to extract information about the horizontal movement and
estimate the possible location of a fish from a bivariate time series [d(t), c(t)] of depths
and temperatures is considered. The ratio r(t)=[c(t)"c(t"1)] · [d(t)"d(t"1)]"1 is
determined by the movement of the fish in the time interval [t"1,t] and the
temperature distribution. Geometric considerations lead to formulae that connect r(t),
the average temperature gradient MT and the unknown horizontal component of the
fish moving in the direction of the horizontal component of MT. The formulae are tools
to study the tag record and CTD data in order to describe the relationship between fish
movements and temperature distribution.
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Introduction

In recent years the study of fish behaviour and its links
with environmental variables has been aided by the data
storage tag. Tags are usually attached to several fish and
some are recaptured in the commercial fisheries after
surviving long enough to collect interesting time-series
data. Several types of tags exist for fish of various size,
with different memory capacity and designed to record
different types of information. Tags recording ambient
light have been used to determine location from sunset
and sunrise times, but the latitude accuracy ‘‘is at best
several degrees’’ according to a manufacturer. Moreover
in the Barents Sea experiment which we refer to later
there are many months without sunset or sunrise. Here
we concentrate on tags that record only depth and
temperature (Godø and Michalsen, 1997).

With pre-programmed time intervals the tag records
at time t the temperature c(t) and the pressure, which is
converted to depth d(t). In the absence of a direct record
of horizontal movements one should look for indirect
clues in the bivariate time series of temperature and
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depth. We consider first a single fish move between
two registrations of temperature and depth and relate
these observations to the temperature gradient MT and
the component of horizontal motion Flx along the
horizontal component of MT. The ‘‘tilt’’ angle between
MT and the vertical line is usually very small but it is
central in our analysis.

Particular attention is given to the time series of
differences dd(t)=d(t)"d(t"1) and dc(t)=c(t)"
c(t"1) and their ratios r(t)=dc(t)/dd(t). From the
sequence of r(t)-values, together with the depth and
temperature series, one may obtain information about
the temperature distribution in the waters where the fish
has been and its movements in that environment.
Material
Background information from oceanographic
surveys (CTD data)

CTD data collected in the Barents Sea in August and
September 1996 (ICES, 1996) are used as an example of
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the background information on the spatial distribution
of temperature in the waters where the fish may have
been (Figure 3). For the study of the tag time series it is
an advantage to have this background. The figure shows
where the vertical component of MT points downwards
(at 90 m depth). MT points upwards with a tilt <6) in
about 17% of the 59 342 points in a three-dimensional
grid; downwards with a similar tilt at about 75% of the
points. At the thermocline PMTP is particularly large and
the tilt angle particularly small. Besides the temperatures
at several depth levels these data also include many
other oceanographic parameters e.g. bottom depth,
salinity, and current speed and direction.
Bivariate time series from simulations

Sequences of random fish positions are generated in a
cylinder with a vertical axis of radius R=500, 750, or
1000 m and depth 50 m (uniform distribution). Assum-
ing a constant temperature gradient, MT, throughout
this volume and choosing arbitrarily the temperature at
a reference point, a temperature series was calculated
from Equation (12). The size PMTP (=0.045 centigrades
per m), and four values of the tilt angle ð"è (0.001,
0.005, 0.025, 0.125 radians) were chosen within the
typical range of values derived from CTD data men-
tioned in the previous section. Thus we obtain four
simulated series of ratios r(t) defined in Equation (2)
below, all based on the same underlying sequence of fish
movements. These simulated series mimic that derived
from the tag data at the CTD survey time.
Methods and results
Notation and geometry

Let d(t) and c(t) denote, respectively, the depth and
temperature recorded in the tag at time t; let dd(t) and
dc(t) denote the first order differences, i.e. respectively:

dd(t)=d(t)"d(t"1) and dc(t)=c(t)"c(t"1) (1)

Let r(t) be the ratio of temperature change to depth
change, i.e.:

We do not consider the actual track of the fish in the
time interval [t"1,t], and will, for simplicity, use the
average velocity in our calculation: let the fish be at pW(u)
at time u, define the fish move vector

]
F=pW(t)"pW(t"1),

and write (d/du)pW(u)=
]
F for t"1<u<t.

At each point in the water mass we consider two
gradient vectors. The gradient of the temperature, MT,
points in the direction of fastest temperature increase
and its length PMTP is proportional to this rate of
increase. The gradient of the depth, D, is a unit vector
(|D|=1) pointing vertically downwards.

Generally MT depends on the position pW(u),
t"1¦u¦t. The temperature difference is:

Here · means scalar (inner) product, and:

is the average gradient between pW(t"1) and pW(t). Let â
and ö be the angles between

]
F and, respectively, MT and

D. Then:

dc(t)=P
]
FP · PMTP · cosâ,

dd(t)=P
]
FP · PDP · cosö=P

]
FP · cosö

and provided cosâ|0:

It will be convenient to describe the move in Cartesian
coordinates. We choose the origin at the departure point
pW(t"1), let the z-axis (the depth axis) point vertically
downwards and choose the two horizontal axes for x
and y so that MT lies in the xz-plane with a non-negative
x-coordinate (Figure 1). Clearly:

D=(0 0 1) (6)

Let è be the angle between MT and D. Then:

MT=PMTP · (sinè 0 cosè) with è∈[0, ð]. (7)

In most cases MT is approximately vertical so sinè will be
close to 0. The smallest of è and ð"è we call the ‘‘tilt
angle’’; it shows how much the temperature gradient
deviates from the vertical line (z-axis).

For short let the fish move length be called F:

]
F=F · (lxlylz) with l2x+l2y+l2z =1 (8)

We take inner products between the unit vector (lxlylz) in
(8) and the unit vectors in (7) and (6) and get:

cosâ=l · sinè+l · cosè and cosö=l (9)
x z z

The vertical component of the fish move is the depth
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difference dd(t), so we have (if lz|0):

Some basic formulae

It is convenient to rewrite (5) as:

Inserting (10) into (11) and multiplying with dd(t) we
find:

dc(t)=PMTP · [cosè · dd(t)+sinè · F · lx] (12)

This links together the observed differences of tempera-
ture and depth, dc(t) and dd(t), the horizontal move
component F · lx along the x-axis, the size of the tem-
perature gradient PMTP, and the parameter è. If dd(t)|0,
we introduce the ratio between horizontal movement in
the x-direction and the vertical movement within one
period:

and rewrite r(t), using (11)–(13), as:
r(t)=PMTP · (cosè+sinè · q) (14)

An immediate consequence of (14) is that the sign of r(t)
is determined by è and q; the gradient size PMTP will only
influence the size Pr(t)P of the ratio.
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Figure 1. A fish move vector between two observations pro-
jected into a vertical plane through the temperature gradient
MT (the xz-plane). The figure illustrates Equations (12) and
(20).
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Figure 2. Fish moves along the bisecting lines labelled +1 and
"1 make r(t)= &PMTP.
The tilt angle and the size of r(t)

With vertical MT we have sinè=0, and by (6), (7), and
(14):

MT=(PMTP · cosè) · D=r(t) · D (where sinè=0) (15)

Thus r(t) tells the size and direction of the (vertical)
temperature gradient.

We now consider non-vertical MT; then sinè>0.
Figure 1 shows the orthogonal projection of the fish
move vector

]
F in the time interval [t"1,t] into the

xz-plane in a situation with cosè<0. The dotted bold
lines are the orthogonal projections of two planes. One is
a plane perpendicular to MT through the origin; we treat
it as an isotherm plane even though it is an approxima-
tion to the actual isotherm surface. The other is the
horizontal xy-plane. (The dotted plain lines show other
isotherm planes.) These two planes divide the water
volume in four parts which appear as sectors in the
xz-plane (Figure 1). It is convenient to draw both
gradients from the origin, even though MT depends on

]
F.

We consider the orthogonal projection of the fish
move vector

]
F into the xz-plane, and make some

observations from (11)–(14) and Figures 1 and 2.
- The ratio r(t) is not defined if the projected move is

along the x-axis [when dd(t)=0].
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- The ratio r(t) becomes positive if and only if this
projected vector is in one of the two tilt angle sectors
bounded by the x-axis and the isotherm through the
origin.

- Inside a ball with the origin for centre, the fraction of
the volume that gives positive r(t) is (ð"è)/ð, i.e.
proportional to the tilt angle.

- Large Pr(t)P-values come with large values of PqP, i.e.
when the projection of

]
F makes a very small angle

with the positive or negative x-axis.
- r(t)=0 for a fish move along the temperature

isotherm plane (undefined along the y-axis).
- A small change in the move

]
F will not lead to

significant change in MT and it can lead to a sign
change in r(t) in two different ways. See Figure 2 and
Equations (11)–(14). Either (A) q passes "cotè and
Pr(t)P is very small (the move is almost along the
isotherm plane through the origin), or (B) q changes
sign ‘‘by passing infinity’’ [i.e. dd(t) changes sign by
passing 0] and Pr(t)P may be very large.

- If we know MT, i.e. both PMTP and è, the tag data
determine F · lx by (12).

- Changes in the y-component F · ly will not change
r(t).

- The ratio r(t) decreases from +£ to "£ when the
projection of

]
F is rotated clockwise from the positive

or negative x-axis until it meets the x-axis again.
The line marked ‘‘+1’’ in Figure 2 corresponds to

â=ö=è/2 or â=ö=ð"è/2; it bisects the sectors of
positive r(t). Along this line r(t)=PMTP. The line marked
‘‘"1’’ is perpendicular to the ‘‘+1’’-line and bisects the
tilt angle. It corresponds to â=(ð"è)/2, ö=(3ð"è)/2.
Along this line r(t)= "PMTP.

From these considerations we get some useful ‘‘rules
of thumb’’. They assume the temperature gradient
points upwards (i.e. è is near ð), and are modified by one
sign change if it points downwards:
- Large positive r(t) come with a slightly downward

[upward] move with a large positive [negative]
x-component.

- Small positive r(t) come with a move slightly above
[below] the isotherm plane through the origin with a
positive [negative] x-component.

- Large negative r(t) come with a slightly upward
[downward] move with a large positive [negative]
x-component.

- Small negative r(t) come with a move slightly below
[above] the isotherm plane through the origin with a
positive [negative] x-component.
Changes in the tilt angle

We now consider in more detail how the ratio size Pr(t)P
depends on the tilt angle. Consider two fish moves

]
F1

and
]
F with the same q-value but with two different
2
angles, è1 and è2, between the temperature and depth
gradients, and let the corresponding ratios be r(t)1 and
r(t)2. Assuming temperature gradients of the same size,
we have by (14):

By inspecting (16) we see how the change of tilt angle
from è1 to è2 affects the ratio r(t). For very small [large]
PqP the sines [cosines] may be ignored.

Usually we expect the tilt angles to be close to 0; then
the cosines in (16) are approximately &1 while the sines
are very small, and Psinè2 · (sinè1)"1P is approximately
the ratio between the tilt angles.

Consider a set of fish moves in a depth interval where
MT may be sufficiently well represented by the same
average MT for all moves. By Equation (14):

r(ti)=PMTP · [cosè+sinè · q(ti)], i=1,2, . . .,n. (17)

Assume the q-values are negative and positive about
equally often; this seems reasonable if the fish is operat-
ing in the same environment for some time. The median
of the r(t)-values corresponds to the median of the
q-values, which is likely to make the term sinè · q
negligible. The median r(t) is therefore a reasonable
estimator for PMTP · cosè.

The median should be preferred to the average, since
the latter is more affected by a few very large Pr(t)P-
values. If the study of fish behaviour should lead to a
modification of the assumption on the distribution of
q-values one may modify the estimator accordingly to be
another fractile of the observed r(t)-values.

Environmental data show that in most situations sinè
is so small that cosè=&1 is an acceptable approxi-
mation. Then, by the above rule, we determine PMTP
and cosè= &1 from tag data when the tilt angle is
small, without actually determining the tilt angle first.

Thus it is natural to consider the deviation of the ratio
from PMTP · cosè:

q · sinè=r(t)"PMTP · cosè (18)

Comparing two tilt angles, we then have:

Increasing the tilt angle from è1 to è2 means that the
differences r(t)1"PMTP · cosè1 get multiplied by a con-
stant factor about sinè2 · (sinè1)"1. This simple connec-
tion is important in the study of the time-series plot of
r(t). The plots of the simulated r(t)-series below with
different tilt angles show it clearly since they have the
same underlying move sequence.
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Simulations

Bivariate time series of depth and temperature are
generated as described previously. To simulate a station-
ary bivariate temperature–depth series, we generate a
series of fish move vectors within a short time window.

Plots of the corresponding r(t) series are shown in
Figure 4, a–d. For the smaller tilt angles the term
PMTP · sinè · q in (14) may be ignored (unless PqP is
exceptionally large). The r(t)-values are distributed
symmetrically around PMTP · cosè~"PMTP.

As the underlying motion sequence is the same, the
plots a–d illustrate the effect of changing the tilt angle,
which is discussed above after Equation (19). Assuming
the approximations r(t)i"PMTP · cosèi~r(t)i+PMTP are
acceptable in the left hand side of Equation (19), the
differences r(t)"("0.045), will get multiplied by a
factor ~5 from one plot to the next.

The number of positive r(t)-values depends on è and
the distribution of q-values. To illustrate this, we gener-
ated five series of 1001 fish positions for each of three
different radii R (1000, 750, and 500 m) of the cylinder
described earlier and height 50 m. The numbers of
positive r(t) are given in Table 1.
Table 2 shows the distributions of PF · lxP, from 10
simulations of 1000 moves each.
Discussion
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Figure 3. The map indicates areas with è<0.1 (vertically hatched) and 0.1<è<ð/2 (diagonally hatched) at 90 m depth. These are the
areas where the vertical component of MT points downwards. These conditions arise where a warm water mass (Atlantic) has
higher density than a cold water mass (Polar or from estuaries) due to higher salinity. Notice also the isotherms of the Atlantic
waters. The small marks (_) indicate longitude 15, 20, . . ., 55)E and latitudes 72, 74, . . ., 82)N. The xy-coordinates show distance
in meters (polar stereographic projection).
The importance of background knowledge

From the CTD data we obtain knowledge of the spatial
distribution of MT. The CTD data are spatially corre-
lated (Journel and Huijbregts, 1978; Cressie, 1991). The
spatial correlation property is important also for the
analysis of tag data. Values located at points close
together are generally highly correlated and in particular
the temperature gradient MT does not change abruptly
in length or direction. When the time window is small it
will be an acceptable approximation to regard MT as a
function of depth alone and assume the same average
MT for all fish movement vectors over the same depth
interval. From the CTD data and the locations of
release and recapture the angle è may be known at the
beginning and the end of the time series.

The bivariate time series recorded in a tag reflects two
components: the fish behaviour i.e. its sequence of move
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Figure 4. Tilt angle (a) 0.001, (b) 0.005, (c) 0.025, and (d) 0.125. Three hundred and sixty periods, R=1000 m, height=50 m.
vectors
]
F, and the distributions of the temperature T,

PMTP and è. The analysis of the bivariate time series
should make use of available background information
on either of these two components from CTD data or
observed fish behaviour. The more we know about one
of them the more the analysis can tell about the other.

Perhaps other environmental information than the
temperature distribution, like, for example, current pat-
terns, may give a useful background to be combined
with the tag data in order to understand the horizontal
migration. Arnold and Holford (1995) have modelled
the moves of fish from several species with known tidal
current patterns in the North Sea. However, we make no
attempt to include such information in the present
discussion.
A time-series analyst may also have to consider the
significance of the difference in scale. The CTD data
come from line transect stations which are much further
apart than the length F of one fish move. Even so the
spatial dependence between data from different stations
makes it reasonable to assume that in most locations
there is no important small-scale structure in the
temperature distribution which does not fit with the
large-scale picture. A notable exception, however, is
when the fish is in turbulent waters near a front.

It should also be remembered that the study of the
r(t)-series must be accompanied by standard time-series
techniques on the series {d(t), c(t)}. In particular we
mention spectral techniques (Priestley, 1981) for the
detection of time stretches with cyclical behaviour, e.g.
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diurnal or tidal cycles (Stensholt, 1998). With the tech-
niques from the Methods and results section one may
describe the temperature distribution where such cyclical
behaviour occurs.
Table 1. The number of positive r(t) in simulations of 1000 fish moves.

Radius ð"è=0.001 ð"è=0.005 ð"è=0.025 ð"è=0.125

1000 19 62 220 435
1000 10 44 239 431
1000 08 48 224 424
1000 08 57 245 455
1000 12 57 239 420
750 07 37 175 401
750 10 45 200 412
750 10 41 208 398
750 04 34 183 416
750 08 51 200 423
500 02 25 114 351
500 05 39 150 373
500 06 31 125 384
500 15 32 143 367
500 09 31 146 381
Table 2. The distribution of F · lx in simulations of 1000 fish moves.

0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6 1.6–1.8 1.8–2.0

207 202 178 131 111 79 55 24 12 1
236 188 173 123 113 76 54 24 11 2
224 178 170 133 96 98 55 26 17 3
217 181 168 136 115 87 55 23 14 4
209 188 169 160 111 67 50 36 9 1
211 195 170 125 106 92 60 28 13 0
240 203 150 149 108 79 43 18 8 2
213 187 173 138 110 80 58 25 15 1
211 199 174 144 108 69 56 24 14 1
230 189 178 119 110 86 51 23 12 2

The upper left 207 means there were 207 cases with 0<F · lx¦2/10 · R in the first simulation, etc.
The interplay between background knowledge
and the tag data

Two vectors, MT and
]

F determine the scalar r(t). Obvi-
ously r(t), and even the four observed scalars d(t"1),
d(t) and c(t"1), c(t), are insufficient information to
recover two vectors. In particular, as pointed out earlier,
the tag information does not allow us to recover any
move component F · ly along the y-axis. However,
the time-series data may well allow us to draw some
conclusions about the two unknown vectors MT
and

]
F.

It is convenient to rewrite (12) as:

sinè · F · l =[dc(t)/PMTP]"cosè · dd(t) (20)
x
Equation (20) exhibits the mentioned interplay by bring-
ing together MT and

]
F. Assuming the approximation

cosè=&1 is acceptable, we may estimate PMTP from a set
of moves as explained in the section on ‘‘Changes in the
tilt angle’’. We then obtain by (20) a set of products
sinè · F · lx from the tag data. The better we know è, the
better we can determine the move component F · lx.
Conversely, empirical knowledge about how the F · lx
may be distributed may indicate a reasonable interval
estimate for è.

In order to get information about the angle è from the
tag data, consider the whole set of F · lx-values for a time
stretch where we may assume that MT has not changed.
- The sizes PF · lxP are bounded upwards by the swim-

ming speed (for some species about one fish length
per second), and this puts a lower bound on our
estimate of sinè.

- Let m be the (unknown) median of the PF · lxP, and M
the median of the sinè · PF · lxP. M is calculated from
tag data by (20), using the approximation cosè=&1.
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If experience indicates that m∈[á,â] with a certain
probability, the equivalent formulations:

m∈[á,â]⇔M∈[sinè · á, sinè · â]⇔sinè∈[M/â, M/á]

give an interval estimate for sinè.
Moreover, it may be useful to combine various items

of information to discover special patterns in the fish’s
movement behaviour. We mention a few examples:
- If a move sequence is characterized by large dd(t)-

values together with small r(t)-values, and the tilt
angle is not unusually large, then the fish has made
several moves with large PF · lxP close to the isotherm
plane.

- Large Pr(t)P may be explained in different ways. At the
thermocline PMTP is particularly large, while the tilt
angle is very small. The r(t)-values are all close to
"PMTP. In front areas the tilt angle is often large.
Both positive and negative r(t) with very large Pr(t)P
occur.

- The distribution of F · lx-values may be calculated
from (20) (based on some è-value, which itself is not
important in this context). What restrictions does the
calculated distribution impose on the joint distribu-
tion of the vectors (F · lx, F · ly)? Is there reason to
suspect that the latter is not rotationally symmetric,
i.e. that the fish prefers some move directions to
others? Tracking experiments may perhaps be
worthwhile.
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